Answer:
Q = -18118.5KJ
W = -18118.5KJ
∆U = 0
∆H = 0
∆S = -60.80KJ/KgK
Explanation:
W = RTln(P1/P2)
P1 = 1bar = 100KN/m^2, P2 = 1500bar = 1500×100 = 150000KN/m^2, T = 23°C = 23 + 273K = 298K
W = 8.314×298ln(100/150000) = 8.314×298×-7.313 = -18118.5KJ ( work is negative because the isothermal process involves compression)
∆U = Cv(T2 - T1)
For an isothermal process, temperature is constant, so T2 = T1
∆U = Cv(T1 - T1) = Cv × 0 = 0
Q = ∆U + W = 0 + (-18118.5) = 0 - 18118.5 = -18118.5KJ
∆H = Cp(T2 - T1)
T2 = T1
∆H = Cp(T1 - T1) = Cp × 0 = 0
∆S = Q/T
Mass of water = 1kg
Heat transferred (Q) per kilogram of water = -18118.5KJ/Kg
∆S = (-18118.5KJ/Kg)/298K = -60.80KJ/KgK
Answer: It is caused by the tendency of some atoms in molecules to attract electrons more than their accompanying atom.
Explanation:
answer: uuuuh so sorry if i get wrong so basically they will practice measuring different liquids. They will use a container called a graduated cylinder to measure liquids. Graduated cylinders have numbers on the side that help you determine the volume. Volume is measured in units called liters or fractions of liters called milliliters (ml).
(defently not copy and pasted)
Answer:
3.6 × 10²⁴ molecules
Explanation:
Step 1: Given data
Moles of methane (n): 6.0 moles
Step 2: Calculate the number of molecules of methane in 6.0 moles of methane
In order to convert moles to molecules, we need a conversion factor. In this case, we will use Avogadro's number: there are 6.02 × 10²³ molecules of methane in 1 mole of molecules of methane.
6.0 mol × 6.02 × 10²³ molecules/1 mol = 3.6 × 10²⁴ molecules