Answer:
0.15M
Explanation:
The equation for molarity is M= n/L. Where "M" is Molarity, "n" is the number of moles of solute, and "L" is the total liters in solution.
You need to calculate the number of moles from the given grams. The molar mass of KOH is (39.098+ 16 +1.008)= 56.106g. To calculate the mols of KOH,
×
= 0.44558... mol, you see that the grams unit cancel out leaving you with mol as the unit.
The volume is given in L already so no need to do any conversion. M=
= 0.1485M ≈ 0.15M

Explanation:
Sodium hydroxide completely ionizes in water to produce sodium ions and hydroxide ions. Hydroxide ions are in excess and neutralize all acetic acid added by the following ionic equation:

The mixture would contain
if
undergoes no hydrolysis; the solution is of volume
after the mixing. The two species would thus be of concentration
and
, respectively.
Construct a RICE table for the hydrolysis of
under a basic aqueous environment (with a negligible hydronium concentration.)

The question supplied the <em>acid</em> dissociation constant
for acetic acid
; however, calculating the hydrolysis equilibrium taking place in this basic mixture requires the <em>base</em> dissociation constant
for its conjugate base,
. The following relationship relates the two quantities:

... where the water self-ionization constant
under standard conditions. Thus
. By the definition of
:
![[\text{HAc} (aq)] \cdot [\text{OH}^{-} (aq)] / [\text{Ac}^{-} (aq) ] = K_b = 10^{-pK_{b}}](https://tex.z-dn.net/?f=%20%5B%5Ctext%7BHAc%7D%20%28aq%29%5D%20%5Ccdot%20%5B%5Ctext%7BOH%7D%5E%7B-%7D%20%28aq%29%5D%20%2F%20%5B%5Ctext%7BAc%7D%5E%7B-%7D%20%28aq%29%20%5D%20%3D%20K_b%20%3D%20%2010%5E%7B-pK_%7Bb%7D%7D%20)


![[\text{OH}^{-}] = 0.30 +x \approx 0.30 \; \text{M}](https://tex.z-dn.net/?f=%20%5B%5Ctext%7BOH%7D%5E%7B-%7D%5D%20%3D%200.30%20%2Bx%20%5Capprox%200.30%20%5C%3B%20%5Ctext%7BM%7D%20)
![pH = pK_{w} - pOH = 14 + \text{log}_{10}[\text{OH}^{-}] = 14 + \text{log}_{10}{0.30} = 13.5](https://tex.z-dn.net/?f=%20pH%20%3D%20pK_%7Bw%7D%20-%20pOH%20%3D%2014%20%2B%20%5Ctext%7Blog%7D_%7B10%7D%5B%5Ctext%7BOH%7D%5E%7B-%7D%5D%20%3D%2014%20%2B%20%5Ctext%7Blog%7D_%7B10%7D%7B0.30%7D%20%3D%2013.5%20)
The question is incomplete, here is the complete question:
What volume (mL) of the partially neutralized stomach acid having concentration 2 M was neutralized by 0.1 M NaOH during the titration? (portion of 25.00 mL NaOH sample was used; this was the HCl remaining after the antacid tablet did it's job)
<u>Answer:</u> The volume of HCl neutralized is 1.25 mL
<u>Explanation:</u>
To calculate the volume of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of stomach acid which is HCl
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

Hence, the volume of HCl neutralized is 1.25 mL