Answer: 6.Explanation:1) Aluminum

So each atom of aluminum lost 3 electrons to pass from 0 oxidation state to 3+ oxidation state.
2) Manganesium

So, each ion of Mn(2+) gained 2 electrons pass from 2+ oxidation state to 0.
3) Balance
Multiply aluminum half-reaction (oxidation) by 2 and multiply manganesium half-raction (reduction) by 3:

4) Net equation
Add the two half-equations:

As you see the left side has 2 Al, 3Mn, and 3*2 positive charges.
The right side has 2 Al, 3 Mn, and 2*3 positive charges.
So, the equation is balanced.
5) Count the number of electrons involved.
As you see 2 atoms of aluminum lost 6 electrons (3 each).
That is the answer to the question. 6 electrons will be lost.
Since there is loss of kinetic energy
Answer:
Explanation:
Option B is the correct answer
Answer:
Volume will goes to increase.
Explanation:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
So when the temperature goes to increase the volume of gas also increase. Higher temperature increase the kinetic energy and molecules move randomly every where in given space so volume increase.
Now we will put the suppose values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 4.5 L × 348 K / 298 k
V₂ = 1566 L.K / 298 K
V₂ = 5.3 L
Hence prove that volume increase by increasing the temperature.
Once molecules are close enough to touch, intermolecular forces become replusive in order to prevent the molecules from overlapping.