Answer:
He will have $276.10 available towards the down payment for his motorcycle
Step-by-step explanation:
The compound interest formula is given by:

Where A is the amount of money, P is the principal(the initial sum of money), r is the interest rate(as a decimal value), n is the number of times that interest is compounded per unit t and t is the time the money is invested or borrowed for.
In this problem, we have that:

Compounded quarterly, so n = 12/4 = 3.
We have to find A.



He will have $276.10 available towards the down payment for his motorcycle
It’s what the other person said trust me :)
Answer:
7 X / 2 y
Step-by-step explanation:
let Mel equals to X and female equals to y
therefore ×=y
therefore to make the count proper we have to multiply the male by 7
so 7 x = 2y and the fraction becomes 7 X / 2 y
hope this helps
From the given dimensions, of MI, IN, NT, TM, and MN, the quadrilateral
MINT can be drawn as shown in the attached image.
<h3>What are the steps for the construction of MINT?</h3>
The given dimensions of the quadrilateral MINT are;
MI = 5 cm
IN = 6 cm
NT = 7 cm
TM = 3 cm
MN = 9 cm
The side MN is a diagonal of MINT, therefore;
ΔMIN, and ΔMTN are triangles with a common base = MN
The steps to construct MINT are therefore;
- Step 1; Draw the line MN = 9 cm.
- Step 2; Place the compass at point <em>M</em> and with a radius MI = 5 cm, draw an arc on one side of MN.
- Step 3; Place the compass at <em>N</em> and with radius IN = 6 cm, draw an arc to intersect the arc dawn in step 1 above.
- Step 4; Place an arc at point <em>M</em> and with radius TM = 3 cm draw an arc on the other side of MN.
- Step 5; Place the compass at point <em>N</em> and with radius NT = 7 cm, draw an arc to intersect the arc drawn in step 3.
- Step 6; Join the point of intersection of the arcs to points <em>M</em> and <em>N</em> to complete the quadrilateral MINT.
Please find attached the drawing (showing the construction arcs) of the
quadrilateral MINT created with MS Word.
Learn more about types of geometric construction here:
brainly.com/question/785568
brainly.com/question/8607612
Answer:
The Point C shows the location of 5-2i in the complex plane: 5 points to the right of the origin and 2 points down from the origin.
Step-by-step explanation:
We have the complex number 5-2i and we have to show the location of the point that represents that number in the complex plane
In the complex plane the real numbers are located in the horizontal axis, increasing to the right. The positives real numbers are at the right of the origin and the negatives to the left.
The complex numbers are located in the vertical axis, with the positives over the origin and the negatives below the origin.
This complex number 5-2i is the sum of a real part (5) and a imaginary part (-2i), so the point will be 5 units rigth on the horizontal axis (for the real part) and 2 units down in the vertical axis (for the imaginary part).