Cot^2x - cot^2x cos^2x
= cot^2x - {(cot^2x)(cos^2x)}
= cot^2x { 1 - cos^2x }
= cot^2x { sin^2x }
= (cos^2x/sin^2x) { sin^2x }
= cos^2x
Answer: The steak costs $ 7.67.
Step-by-step explanation:
Given: Cost per pound of Rib-eye steaks = $8.52
Ms. Markum bought a 0.9-pound steak.
To find : cost of 0.9 pound steak =
Then cost of 0.9 pound steak = 0.9 x (Cost per pound of Rib-eye steaks )
= $ (0.9 x 8.52)
= $7.668 ≈ $ 7.67
Hence, the steak costs $ 7.67.
<span>Length = 1200, width = 600
First, let's create an equation for the area based upon the length. Since we have a total of 2400 feet of fence and only need to fence three sides of the region, we can define the width based upon the length as:
W = (2400 - L)/2
And area is:
A = LW
Substitute the equation for width, giving:
A = LW
A = L(2400 - L)/2
And expand:
A = (2400L - L^2)/2
A = 1200L - (1/2)L^2
Now the easiest way of solving for the maximum area is to calculate the first derivative of the expression above, and solve for where it's value is 0. But since this is supposedly a high school problem, and the expression we have is a simple quadratic equation, we can solve it without using any calculus. Let's first use the quadratic formula with A=-1/2, B=1200, and C=0 and get the 2 roots which are 0 and 2400. Then we'll pick a point midway between those two which is (0 + 2400)/2 = 1200. And that should be your answer. But let's verify that by using the value (1200+e) and expand the equation to see what happens:
A = 1200L - (1/2)L^2
A = 1200(1200+e) - (1/2)(1200+e)^2
A = 1440000+1200e - (1/2)(1440000 + 2400e + e^2)
A = 1440000+1200e - (720000 + 1200e + (1/2)e^2)
A = 1440000+1200e - 720000 - 1200e - (1/2)e^2
A = 720000 - (1/2)e^2
And notice that the only e terms is -(1/2)e^2. ANY non-zero value of e will cause this term to be non-zero and negative meaning that the total area will be reduced. Therefore the value of 1200 for the length is the best possible length that will get the maximum possible area.</span>
Answer:
B. Rotation
Step-by-step explanation:
Answer:
See attached picture
Step-by-step explanation:
When functions are transformed there are a few simple rules:
• Adding/subtracting inside the parenthesis to the input shifts the function left(+) and right(-).
• Adding/subtracting outside the parenthesis to the output shifts the function up(+) and down(-).
• Multiplying the function by a number less than 1 compresses it towards the x-axis.
• Multiplying the function by a number greater than 1 stretches it away from the x-axis.
The equation for g has been subtracted inside the parenthesis by 2 which will shift the graph 2 units to the right.
The equation for g has also been subtracted outside the parenthesis by 3 which will shift the graph 3 units down.
The graph is shown in black while f(x) is show in purple in the attached picture.