Answer:
p
Step-by-step explanation:
Given:
The height of a golf ball is represented by the equation:

To find:
The maximum height of of Anna's golf ball.
Solution:
We have,

Differentiate with respect to x.


For critical values,
.




Differentiate y' with respect to x.


Since double derivative is negative, the function is maximum at
.
Substitute
in the given equation to get the maximum height.




Therefore, the maximum height of of Anna's golf ball is 6.25 units.
the last one because 7*3=21 14*3=42 and 21*3=63
<h3>
Answer: -2w^2 + 25w = 25 or -2w^2 + 25w - 25 = 0</h3>
================================================================
Explanation:
Refer to the diagram below. The width is w. We have two opposite and parallel sides equal to this. The other two parallel congruent sides are L = 25-2w meters long. We start with the total amount of fencing, and then subtract off the two width values, so 25-w-w = 25-2w.
The area of the rectangle is
Area = length*width
Area = L*W
Area = (25-2w)*w
Area = 25w - 2w^2
Area = -2w^2 + 25w
Set this equal to the desired area (25 square meters) to get
-2w^2 + 25w = 25
and we can subtract 25 from both sides to get everything on one side
-2w^2 + 25w - 25 = 0
side note: The two approximate solutions of this equation are w = 1.0961 and w = 11.4039 (use the quadratic formula or a graphing calculator to find this)
Answer: The required probability is 0.3456.
Step-by-step explanation:
Since we have given that
Probability of winning at any given time = 0.6
Probability of losing at any given time = 1-0.6 = 0.4
Number of total matches = 5
Number of won matches = 3
So, using "Binomial distribution", we get that

Hence, the required probability is 0.3456.