1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inna [77]
2 years ago
7

Plz help me plzzzzz asap

Mathematics
1 answer:
Varvara68 [4.7K]2 years ago
6 0

Answer:

2 \frac{2}{9}

Step-by-step explanation:

First, we will turn 5 2/5 into an improper fraction:

5 * 5 = 25 + 2 = 27/5

So they worked for 27/5 days.

We want to divide the days worked by the distance to get the unit rate of distance per day:

\frac{12}{\frac{27}{5} } = \frac{12}{1} * \frac{5}{27}=\frac{60}{27}=\frac{20}{9}

So our answer is 2 \frac{2}{9}

      Hope this helps, have a great day! :D

You might be interested in
What is 5X minus Y equals 6+ negative 2X plus Y=8
vova2212 [387]

Answer:

For the given expression: X = (\frac{10}{3})  , Y =  (\frac{26}{3})

Step-by-step explanation:

Here, the given expression in statement form is given as:

5 X minus Y equals 6 + negative 2 X plus Y = 8

Now, converting the given statement mathematically, we get:

5X  - Y  = 6 + (-2X) + Y  = 8

Now, considering first  and the last  terms,we get:

5 X - Y  = 8  .... (1)

and , considering second and the last  terms,we get:

6 + (-2X) + Y  = 8 or, -2X  + Y  = 2  ......... (2)

Adding (1) and (2) , we get:

5 X - Y  - 2 X  + Y  = 8 + 2

or, 3 X =  10

or, X = 10/3  = 3.34

Now, 5X - Y = 8

or, 5(\frac{10}{3}) - Y = 8\\ \implies Y = \frac{50}{3} - 8  = \frac{50 - 24}{3}  = \frac{26}{3} \\\implies Y = \frac{26}{3}

Hence, for the given expression:

X = (\frac{10}{3})  , Y =  (\frac{26}{3})

3 0
3 years ago
Can someone help me in #66
VladimirAG [237]
\bf log_{{  a}}(xy)\implies log_{{  a}}(x)+log_{{  a}}(y)
\\ \quad \\
% Logarithm of rationals
log_{{  a}}\left(  \frac{x}{y}\right)\implies log_{{  a}}(x)-log_{{  a}}(y)
\\ \quad \\
% Logarithm of exponentials
log_{{  a}}\left( x^{{  b}} \right)\implies {{  b}}\cdot  log_{{  a}}(x)\\\\
-------------------------------\\\\


\bf log_4\left( \cfrac{\sqrt{x^5y^7}}{zw^4} \right)\implies log_4(\sqrt{x^5y^7})-log_4(zw^4)
\\\\\\
log_4\left[(x^5y^7)^{^\frac{1}{2}}\right]-log_4(zw^4)\implies 
\cfrac{1}{2}log_4\left[(x^5y^7)\right]-log_4(zw^4)
\\\\\\
\cfrac{1}{2}\left[ log_4(x^5)+log_4(y^7) \right] -[log_4(z)+log_4(w^4)]
\\\\\\
\cfrac{1}{2}log_4(x^5)+\cfrac{1}{2}log_4(y^7)-[log_4(z)+log_4(w^4)]

\bf \cfrac{1}{2}\cdot 5log_4(x)+\cfrac{1}{2}\cdot 7log_4(y)-log_4(z)-4log_4(w)
\\\\\\
\cfrac{5}{2}log_4(x)+\cfrac{7}{2}log_4(y)-log_4(z)-4log_4(w)
6 0
3 years ago
100 POINTS HELP ASAP Linear Combination
notka56 [123]

Answer:

1)   x=\dfrac12

2)   n = -3 \ \ \textsf{and} \ \ m = -4

3)  see below

4)  A:  0 = 1

Step-by-step explanation:

<u>Question 1</u>

15-0.5(4x-2)+4x=17

\implies 15-2x+1+4x=17

\implies 2x+16=17

\implies 2x=1

\implies x=\dfrac12

<u>Question 2</u>

\textsf{rearrange} \ n=m+1 :

\implies -m=-n+1

\textsf{add equations} \ -m=-n+1 \ \textsf{and} \ m=2n+2:\\

\implies0=n+3

\implies n=-3

\textsf{substitute} \ \ n=-3 \ \ \textsf{into} \ \ m=n-1:

\implies m=-3-1

\implies m=-4

<u>Question 3</u>

subtract the second equation from the first

divide both sides by -4

substitute found value for y into first equation

solve for x

<u>Question 4</u>

3j=k

k=3j+1

\textsf{rearrange} \ 3j=k :

\implies -k=-3j

\textsf{add equations}\  -k=-3j \ \ \textsf{and}\ \ k=3j+1:

\implies 0=1

Solution = A

6 0
2 years ago
Given that CD¯¯¯¯¯¯¯¯ is a perpendicular bisector of AB¯¯¯¯¯¯¯¯, where D is on AB¯¯¯¯¯¯¯¯, how can you use the Pythagorean Theor
Liula [17]

Answer:

(AD)^2 + (CD)^2 = (CA)^2 and (CD)^2 + (BD)^2 = (CB)^2

Step-by-step explanation:

Given

Bisector: CD

of Line AB

Required

Apply Pythagoras Theorem

From the question, CD bisects AB and it bisects it at D.

The relationship between AB and CD is given by the attachment

Considering ACD

From the attachment, we have that:

Hypothenuse = CA

Opposite = CD

Adjacent = AD

By Pythagoras Theorem, we have

(AD)^2 + (CD)^2 = (CA)^2

Considering CBD

From the attachment, we have that:

Hypothenuse = CB

Opposite = CD

Adjacent = BD

By Pythagoras Theorem, we have:

(CD)^2 + (BD)^2 = (CB)^2

4 0
3 years ago
Read 2 more answers
Help me to find the slope and t-intercept please asap
Ludmilka [50]

Answer:

4/7x - 5 ________________________________________

8 0
3 years ago
Other questions:
  • Polly’s Popsicle Shop sells between 200 and 250 popsicles every day. 20% of the popsicles she sells are sugar-free. Which of the
    15·1 answer
  • Y=x2+6x+2 in vertex form
    6·1 answer
  • A triangle includes one angle that 72º. Which pair could be the measures of the other two angles of the triangle?
    8·2 answers
  • Sell more than you buy and prosper. If you export more than you import, you will be rich.
    12·1 answer
  • Is the ratio 2.5:3.5 proportional to the ratio 12:5
    10·1 answer
  • PLEASE HELP A. S. A. P.
    9·1 answer
  • Shad Yarbrough wants to consider the cost per use of a high-end desk top computer he is considering for his web site business. T
    6·1 answer
  • Write the linear function f with the values f(1) = 1 and f(-3) = 17. (Note: Use f(x) instead of y.) Show work to get full credit
    13·1 answer
  • Explain what independent and dependent variables mean
    12·1 answer
  • What is the surface area of this right prism?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!