The slope of the line of best fit to the raw-score scatter plot is 0.98
- The equation is y = 0.98x - 3.74
- The value of y given that x = 12 is 8.02
<h3>How to determine the slope of the line?</h3>
From the question, we have the following parameters that can be used in our computation:
- Standard deviations of X, Sx = 1.88
- Standard deviations of Y, Sy =2.45
- Correlation coefficient, r between X and Y = 0.75
The slope (b) of the line is calculated as
b = r * Sy/Sx
Substitute the known values in the above equation, so, we have the following representation
b = 0.75 * 2.45/1.88
Evaluate
b = 0.98
<h3>The equation of the line of best fit</h3>
A linear equation is represented as
y = bx + c
Where
Slope = b
y-intercept = c
In (a), we have
b = 0.98
So, we have
y = 0.98x + c
Recall that the point (13, 9) is on the line of best fit.
So, we have
9 = 0.98 * 13 + c
This gives
9 = 12.74 + c
Evaluate
c = -3.74
So, we have
y = 0.98x - 3.74
<h3>The value of y from x</h3>
Here, we have
x = 12
So, we have
y = 0.98 x 12 - 3.74
Evaluate
y = 8.02
Read more about line of best fit at
brainly.com/question/1564293
#SPJ1
SOLUTION
This is a binomial probability. For i, we will apply the Binomial probability formula
i. Exactly 2 are defective
Using the formula, we have

Note that I made the probability of being defective as the probability of success = p
and probability of none defective as probability of failure = q
Exactly 2 are defective becomes the binomial probability

Hence the answer is 0.1157
(ii) None is defective becomes

hence the answer is 0.4823
(iii) All are defective

(iv) At least one is defective
This is 1 - probability that none is defective

Hence the answer is 0.5177
Answer: infinitely many solutions.
Step-by-step explanation:
Ok, our equation is:
-2.1*b + 5.3 = b - 3.1*b + 5.3
now, simplifyng the right side, we have:
b - 3.1*b + 5.3 = (1 - 3.1)*b + 5.3 = -2.1*b + 5.3
Then our initial expression is:
-2.1*b + 5.3 = -2.1*b + 5.3
So in both sides of the equality we have the exact same thing, so this is a trivial equality.
This means that the equality will remain true for any value of b, which means that we have infinitely many solutions.
(x+2)(x+8)(x+k)=x^3+9x^2+6x-16
(x^2+10x+16)(x+k)=x^3+9x^2+6x-16
x^3+10x^2+16x+kx^2+10kx+16k=x^3+9x^2+6x-16
kx^2+10kx+16k=-x^2-10x-16
k(x^2+10x+16)=-x^2-10x-16
k=(-x^2-10x-16)/(x^2+10x+16)
k=-1
so the width is (x-1)