The answer is B
Have a good day!
Answer:
The third graph
Step-by-step explanation:
The Greatest Integer function (also called "floor" function. is in fact the one depicted on your first graph on the left. It indicates the integer part of the real number x.
So, if one translates such function two units down , as requested by the subtraction of 2 of the function y the problem shows, one ends up with the third graph depicted on the page.
Answer:
The value of c = -0.5∈ (-1,0)
Step-by-step explanation:
<u>Step(i)</u>:-
Given function f(x) = 4x² +4x -3 on the interval [-1 ,0]
<u> Mean Value theorem</u>
Let 'f' be continuous on [a ,b] and differentiable on (a ,b). The there exists a Point 'c' in (a ,b) such that

<u>Step(ii):</u>-
Given f(x) = 4x² +4x -3 …(i)
Differentiating equation (i) with respective to 'x'
f¹(x) = 4(2x) +4(1) = 8x+4
<u>Step(iii)</u>:-
By using mean value theorem


8c+4 = -3-(-3)
8c+4 = 0
8c = -4

c ∈ (-1,0)
<u>Conclusion</u>:-
The value of c = -0.5∈ (-1,0)
<u></u>
since its over 1 it just makes it 24