Answer:Number of electrons that are present in an atom is determined by the electronic configuration of that atom.
If an ion is carrying a positive charge, it means that the atom has lost electrons and if an ion is carrying a negative charge, it means that the atom has gained electrons.
For the given options:
Option A: The atomic number of hydrogen atom is 1 and the electronic configuration for ion will be:
Thus, this atom does not have any electrons.
Option B: The atomic number of bromine atom is 35 and the electronic configuration for ion will be:
Thus, this atom has 36 electrons.
Option C: The atomic number of aluminium atom is 13 and the electronic configuration for ion will be:
Explanation:
Fluorine 20 (F - Atomic number 9 and atomic mass 20). Firstly we need to know what is beta decay. Beta decay occurs when one neutron changes into a proton and an electron therefore the atomic mass will remain the same as even though we loose a neutron it is replaced by a proton, the atomic number is always raised by 1 when one beta decay occurs. The produced electron is shot out of the nucleus at an incredible speed. This speedy electron we call a beta particle.
Ok now the reaction.
20 20 0
F -> Ne + e
9 10 -1
Remember the atomic number determines the nature of the element ( i.e what elemnt it is).
Hope this helps :).
Answer: B (to provide a statement that can be tested with an experiment
<span>In each case, the same bond gets broken - the bond between the hydrogen and oxygen in an -OH group. Writing the rest of the molecule as "X"
</span>
The factors to consider
Two of the factors which influence the ionisation of an acid are:
<span>the strength of the bond being broken,the stability of the ions being formed.</span>
In these cases, you seem to be breaking the same oxygen-hydrogen bond each time, and so you might expect the strengths to be similar.
Answer:
each of the above (A, B, and C) occurs
Explanation:
When an ionic compound dissolves in the water, the following happens :
-- the solvent solute attractive forces tries to overcome the solute solute attractions.
-- the water dipoles' negative end attracts the positive ions
-- the water dipoles' positive end attracts the negative ions
For example,
NaCl which is an ionic compound and also a strong electrolyte, it dissociates into water on the hydrated Na cations as well as Cl anions.
In water, the oxygen has negative charge and thus attracts the positive ions of the sodium, whereas the hydrogen is of positive and it attract the ions of chlorine which is negative.