Answer:
10.8 days (3 sig.figs.)
Explanation:
All radioactive decay is 1st order decay defined by the expression A = A₀e^-kt
which is solved for time of decay (t) => t = ln(A/A₀) / -k
A = final weight = 1.0 gram
A₀ = initial weight = 16.0 grams
k = rate constant = 0.693/t(1/2) = 0.693/2.69 days = 0.258 days⁻¹
t = ln(1/16) / -0.258da⁻¹ = (-2.77/-0.258) days = 10.74646792 days (calculator)
≅ 10 days (1 sig. fig. based on given 1 gram mass)
Answer:

Explanation:
Hello,
In this case, for the given chemical reaction, we first identify the limiting reactant by noticing that due to the 1:1 mole ratio for magnesium to iodine the reacting moles must the same, nevertheless, there are only 2.68 moles of magnesium versus 3.56 moles of iodine, for that reason, magnesium is the limiting reactant, so the theoretical turns out:

Thus, we compute the percent yield as:

Best regards.
Answer:
47.9 g of ethanol
Explanation:
Combustion is a chemical reaction in which a substance reacts with oxygen to produce heat and light. Combustion reactions have been very useful as a source of energy. Ethanol is now burnt for energy purposes as a fuel. Ethanol has even been proposed as a possible alternative to fossil fuels.
Since 1 mole of ethanol when combusted releases 1367 kJ/mol of energy
x moles of ethanol releases 1418 kJ/mol.
x= 1 × 1418 kJ/mol/ 1367 kJ/mol
x= 1.04 moles of ethanol.
Mass of ethanol = number of moles × molar mass
Molar mass of ethanol = 46.07 g/mol
Mass of ethanol = 1.04 moles × 46.07 g/mol
Mass of ethanol= 47.9 g of ethanol
the heat of reaction for a chemical reaction