Every moving object has kinetic energy.
Kinetic energy is an energy possessed by an object in motion
Answer: The coefficient for the diatomic oxygen (O2) is 3.
Explanation:
To know the coefficient for the diatomic Oxygen, we need to balance the equation.
Fe + O2 -------> Fe2O3
LHS of the equation; Fe = 1 , O2 = 1
RHS of the equation; Fe = 2 , O = 3
∴ Multiply 'Fe' on the LHS of the equation by 4 and O2 by 3
Doing that will give the balance equation which is;
4 Fe + 3 O2 --------> 2 Fe2O3
The coefficient for the diatomic oxygen (O2) as seen from the equation is 3.
<span>There are three different subatomic particles present in the atoms of each element: neutron, proton and </span>electron<span>. It is the </span>electrons<span>, and more specifically the valence </span>electrons<span>, that determine the reactivity of an element.</span>
Mass C₆H₈O₇ : 0.531484 g
<h3>Further explanation</h3>
Reaction
3NaHCO₃ (aq) + C₆H₈O₇ (aq) → 3 CO₂ (g) + 3 H₂O (l) + Na₃C₆H₅O₇ (aq)
MW NaHCO₃ : 84 g/mol
mass NaHCO₃ : 7.10² mg=0.7 g
mol NaHCO₃ :

mol C₆H₈O₇ :

MW C₆H₈O₇ : 192 g/mol
mass C₆H₈O₇ :

HF and NaF - If the right concentrations of aqueous solutions are present, they can produce a buffer solution.
<h3>What are buffer solutions and how do they differ?</h3>
- The two main categories of buffers are acidic buffer solutions and alkaline buffer solutions.
- Acidic buffers are solutions that contain a weak acid and one of its salts and have a pH below 7.
- For instance, a buffer solution with a pH of roughly 4.75 is made of acetic acid and sodium acetate.
<h3>Describe buffer solution via an example.</h3>
- When a weak acid or a weak base is applied in modest amounts, buffer solutions withstand the pH shift.
- A buffer made of a weak acid and its salt is an example.
- It is a solution of acetic acid and sodium acetate CH3COOH + CH3COONa.
learn more about buffer solutions here
<u>brainly.com/question/8676275</u>
#SPJ4