Answer:
surface charge density on each sphere is
C
Explanation:
given data
radius of smaller sphere = 5 cm
radius of larger sphere is 12 cm
electric field at surface of larger sphere = 660 kV/m = 660 × 1000 v/m
solution
we apply here electric field formula that is express as
E =
.................1
put here value
660000 =
Q1 = 1056 ×
and
here field inside a conductor is zero so that electric potential ( V ) is constant
..................2
so Q2 will be
Q2 =
Q2 =
C
Answer:
a) T = 608.22 N
b) T = 608.22 N
c) T = 682.62 N
d) T = 533.82 N
Explanation:
Given that the mass of gymnast is m = 62.0 kg
Acceleration due to gravity is g = 9.81 m/s²
Thus; The weight of the gymnast is acting downwards and tension in the string acting upwards.
So;
To calculate the tension T in the rope if the gymnast hangs motionless on the rope; we have;
T = mg
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs the rope at a constant rate tension in the string is
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs up the rope with an upward acceleration of magnitude
a = 1.2 m/s²
the tension in the string is T - mg = ma (Since acceleration a is upwards)
T = ma + mg
= m (a + g )
= (62.0 kg)(9.81 m/s² + 1.2 m/s²)
= (62.0 kg) (11.01 m/s²)
= 682.62 N
When the gymnast climbs up the rope with an downward acceleration of magnitude
a = 1.2 m/s² the tension in the string is mg - T = ma (Since acceleration a is downwards)
T = mg - ma
= m (g - a )
= (62.0 kg)(9.81 m/s² - 1.2 m/s²)
= (62.0 kg)(8.61 m/s²)
= 533.82 N
(amount of heat)Q = ? , (Mass) m= 4 g , ΔT = T f - T i = 180 c° - 20 °c = 160 °c ,
Ce = 0.093 cal/g. °c
Q = m C ΔT
Q = 4 g × 0.093 cal/g.c° × ( 180 °c- 20 °c )
Q= 4×0.093 × 160
Q = 59.52 cal
I hope I helped you^_^
some ball when you bounce it it comes back up but according to gravity the energy goes away
Answer:
This is because it steps up or steps down electrical voltage. It multiplies either voltage (if it is a voltage transformer )or current (if it is a current transformer), but it does not multiply electrical power.
Explanation:
A transformer steps up or steps down electrical voltage, by transmitting power at a voltage, V₁ and Current I₁ at one terminal, to a voltage, V₂ and Current I₂ at its other terminals, just like a lever transmits force from one point to another. Since the power transmitted remains the same, (energy per unit time remains constant), I₁V₁ = I₂V₂ ⇒ I₁/I₂ = V₂/V₁ = n (the turns ratio of the transformer). So, the turns ratio will determine if its a step-up or step-down transformer. V₂ = nV₁. So, if V₁ > V₂ it is a step down transformer and if V₁ < V₂ it is a step-up transformer.It multiplies either voltage (if it is a voltage transformer )or current (if it is a current transformer), but it does not multiply electrical power, since P = IV = constant for the transformer.