<h3>
Answer:</h3>
172.92 °C
<h3>
Explanation:</h3>
Concept being tested: Quantity of heat
We are given;
- Specific heat capacity of copper as 0.09 cal/g°C
- Quantity of heat is 8373 calories
- Mass of copper sample as 538.0 g
We are required to calculate the change in temperature.
- In this case we need to know that the amount of heat absorbed or gained by a substance is given by the product of mass, specific heat capacity and change in temperature.
Therefore, to calculate the change in temperature, ΔT we rearrange the formula;
ΔT = Q ÷ mc
Thus;
ΔT = 8373 cal ÷ (538 g × 0.09 cal/g°C)
= 172.92 °C
Therefore, the change in temperature will be 172.92 °C
The relationship between wavelength

, frequency f and speed of light c for an electromagnetic wave is

Using the data of the problem, we find
Effort force
Explanation:
When the potion of fulcrum and weight is changed, the mechanical advantage changes.Increasing the distance between the fulcrum and the effort, there is a proportion increase in effort required to lift a load.The ration of the distance from the fulcrum to the position of input and output application gives the mechanical advantage in levers when losses due to friction are not considered.
Learn More
Mechanical advantage in Levers : brainly.com/question/11600677
Keywords : Levers, fulcrum, position
#LearnwithBrainly
The formula for the period of wave is: wave period is equals to 1 over the frequency.

To get the value of period of wave you need to divide 1 by 200 Hz. However, beforehand, you have to convert 200 Hz to cycles per second. So that would be, 200 cyles per second or 200/s.
By then, you can start the computation by dividing 1 by 200/s. Since 200/s is in fractional form, you have to find its reciprocal form and multiply it to one which would give you 1 (one) second over 200. This would then lead us to the value
0.005 seconds as the wave period.
wave period= 1/200 Hz
Convert Hz to cycles per second first
200 Hz x 1/s= 200/second
Make 200/second as your divisor, so:
wave period= 1/ 200/s
get the reciprocal form of 200/s which is s/200
then you can start the actual computation:
wave period= 1 x s divided by 200
this would give us an answer of
0.005 s.