Answer: ![-\frac{1}{2}\times \frac{d[Br^.]}{dt}=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20%5Cfrac%7Bd%5BBr%5E.%5D%7D%7Bdt%7D%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
Explanation:
Rate of a reaction is defined as the rate of change of concentration per unit time.
Thus for reaction:

The rate in terms of reactants is given as negative as the concentration of reactants is decreasing with time whereas the rate in terms of products is given as positive as the concentration of products is increasing with time.
![Rate=-\frac{d[Br^.]}{2dt}](https://tex.z-dn.net/?f=Rate%3D-%5Cfrac%7Bd%5BBr%5E.%5D%7D%7B2dt%7D)
or ![Rate=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=Rate%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
Thus ![-\frac{d[Br^.]}{2dt}=+\frac{d[Br_2]}{dt}](https://tex.z-dn.net/?f=-%5Cfrac%7Bd%5BBr%5E.%5D%7D%7B2dt%7D%3D%2B%5Cfrac%7Bd%5BBr_2%5D%7D%7Bdt%7D)
Answer:
a little
Explanation:
First of all, it's not how you spell "tyres", it is tires.
Second of all, you already know the Mass so what you need to find out now is contact the road. You Know that your number and letter are squared so that would turn into 6m x 2.4. Then you do the math do continue on to finish it. Have a great day!! Good luck with the answer!!
<span>In this problem, we need to solve for Bubba’s mass. To do this, we let A be the area of the raft and set the weight of the displaced fluid with the raft alone as ρwAd1g and ρwAd2g with the person on the raft, </span>where ρw is the density of water, d1 = 7cm, and d2= 8.4 cm. Set the weight of displaced fluid equal to the weight of the floating objects to eliminate A and ρw then solve for m.
<span>ρwAd1g = Mg</span>
ρw<span>Ad2g = (M + m) g</span>
<span>d2∕d1 = (M + m)/g</span>
m = [(d2<span>∕d1)-1] M = [(8.4 cm/7.0 cm) - 1] (600 kg) =120 kg</span>
This means that Bubba’s mass is 120 kg.
Place the next vector with its tail at the previous vector's head. ... To subtract vectors, proceed as if adding the two vectors, but flip the vector to be subtracted across the axes and then join it tail to head as if adding. Adding or subtracting any number of vectors yields a resultant vector.
Explanation:
Answer:
No photo or graph is there
Explanation: