1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bearhunter [10]
2 years ago
15

The perimeter of the polygon is 36 in. What is the length of side z? any one for 20pt

Mathematics
1 answer:
Reil [10]2 years ago
7 0

Answer:

brqnficojeuiyrjnxsoihgfyufhrbjenfrvbwejifwhbfuiwebf

Step-by-step explanation:

You might be interested in
Solve the word problem and show your work.<br><br>I need help
Aleksandr [31]

Answer:

ima just take all your points and roll out tbh

Step-by-step explanation:

6 0
2 years ago
Do yall know any easy way to do slope​
mart [117]

Answer:

To find the slope of two given points, you can use the point-slope formula of (y2 - y1) / (x2 - x1). With the points plugged in, the formula looks like (3 - 2) / (4 - 1). Simplify the formula to get a slope of ⅓.

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
6+[11-{10+2-(8 of 2+1-3×4) }]
Vesna [10]

Answer:

17

Step-by-step explanation:

Step-by-step explanation:

6+[11-{10+2-(8×2+1-3×4)}]

6+[11-{10+2-(8×2+1-3×4)}]6+[11-{10+2-(12)}

6+[11-{10+2-(8×2+1-3×4)}]6+[11-{10+2-(12)} ]6+[11-[10+2-12}]

6+[11-{10+2-(8×2+1-3×4)}]6+[11-{10+2-(12)} ]6+[11-{10+2-12}]6+[11-{0}]

6+[11-0]

6+[11]

6+11

17 Ans.

7 0
2 years ago
Problemas de razonamiento división de números decimales. Ayer Susana se fue de viaje a visitar a unos familiares. Recorrió 135,7
schepotkina [342]

Usando las relaciones entre velocidad, distancia y tiempo, se encuentra que ella condujo a una velocidad media de 90,5 km/h.

--------------------------

La <u>velocidad </u><u>es la distancia dividida por el tiempo</u>, por lo que:

v = \frac{d}{t}

  • Total de 135,75 km, o sea, d = 135,75
  • Llego en 1,5 horas, o sea, t = 1,5

La velocidad es:

v = \frac{d}{t} = \frac{135,75}{1,5}

División de decimales, o sea, seguimos multiplicando los números por 10 hasta que ninguno sea decimal:

v = \frac{135,75}{1,5} = \frac{1357,5}{15} = \frac{13575}{150} = 90,5

Ella condujo a una velocidad media de 90,5 km/h.

Un problema similar es dado en brainly.com/question/24558377

4 0
1 year ago
Find the critical points of the function f(x, y) = 8y2x − 8yx2 + 9xy. Determine whether they are local minima, local maxima, or
NARA [144]

Answer:

Saddle point: (0,0)

Local minimum: (\frac{3}{8}, -\frac{3}{8})

Local maxima: (0,-\frac{9}{8}), (\frac{9}{8},0)

Step-by-step explanation:

The function is:

f(x,y) = 8\cdot y^{2}\cdot x -8\cdot y\cdot x^{2} + 9\cdot x \cdot y

The partial derivatives of the function are included below:

\frac{\partial f}{\partial x} = 8\cdot y^{2}-16\cdot y\cdot x+9\cdot y

\frac{\partial f}{\partial x} = y \cdot (8\cdot y -16\cdot x + 9)

\frac{\partial f}{\partial y} = 16\cdot y \cdot x - 8 \cdot x^{2} + 9\cdot x

\frac{\partial f}{\partial y} = x \cdot (16\cdot y - 8\cdot x + 9)

Local minima, local maxima and saddle points are determined by equalizing  both partial derivatives to zero.

y \cdot (8\cdot y -16\cdot x + 9) = 0

x \cdot (16\cdot y - 8\cdot x + 9) = 0

It is quite evident that one point is (0,0). Another point is found by solving the following system of linear equations:

\left \{ {{-16\cdot x + 8\cdot y=-9} \atop {-8\cdot x + 16\cdot y=-9}} \right.

The solution of the system is (3/8, -3/8).

Let assume that y = 0, the nonlinear system is reduced to a sole expression:

x\cdot (-8\cdot x + 9) = 0

Another solution is (9/8,0).

Now, let consider that x = 0, the nonlinear system is now reduced to this:

y\cdot (8\cdot y+9) = 0

Another solution is (0, -9/8).

The next step is to determine whether point is a local maximum, a local minimum or a saddle point. The second derivative test:

H = \frac{\partial^{2} f}{\partial x^{2}} \cdot \frac{\partial^{2} f}{\partial y^{2}} - \frac{\partial^{2} f}{\partial x \partial y}

The second derivatives of the function are:

\frac{\partial^{2} f}{\partial x^{2}} = 0

\frac{\partial^{2} f}{\partial y^{2}} = 0

\frac{\partial^{2} f}{\partial x \partial y} = 16\cdot y -16\cdot x + 9

Then, the expression is simplified to this and each point is tested:

H = -16\cdot y +16\cdot x -9

S1: (0,0)

H = -9 (Saddle Point)

S2: (3/8,-3/8)

H = 3 (Local maximum or minimum)

S3: (9/8, 0)

H = 9 (Local maximum or minimum)

S4: (0, - 9/8)

H = 9 (Local maximum or minimum)

Unfortunately, the second derivative test associated with the function does offer an effective method to distinguish between local maximum and local minimums. A more direct approach is used to make a fair classification:

S2: (3/8,-3/8)

f(\frac{3}{8} ,-\frac{3}{8} ) = - \frac{27}{64} (Local minimum)

S3: (9/8, 0)

f(\frac{9}{8},0) = 0 (Local maximum)

S4: (0, - 9/8)

f(0,-\frac{9}{8} ) = 0 (Local maximum)

Saddle point: (0,0)

Local minimum: (\frac{3}{8}, -\frac{3}{8})

Local maxima: (0,-\frac{9}{8}), (\frac{9}{8},0)

4 0
3 years ago
Other questions:
  • What is the greatest common factor of the polynomial's terms?
    14·1 answer
  • A corporation must appoint a​ president, chief executive officer​ (CEO), chief operating officer​ (COO), and chief financi
    15·1 answer
  • A cylindrical basin is 2 feet tall and has a diameter of 5 feet, as shown.
    13·2 answers
  • Find the surface area of the triangular prism (above) using its net (below).
    6·2 answers
  • I need help understanding these it’s my school work
    13·1 answer
  • What is the solution to this equation? X/4 =-12
    5·1 answer
  • Do number 7 plz finding QR​
    6·1 answer
  • Expand to write and equivalent expression: 4/5(5k-12d)
    13·1 answer
  • Change the word phrase to an algebraic expression. Use x as the variable to represent the number.
    12·1 answer
  • You are shopping for school supplies. You want to buy 8 notebooks for $1.50 each. Show how you can use the distributive property
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!