1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nostrana [21]
3 years ago
12

I have a question here. ​

Mathematics
1 answer:
taurus [48]3 years ago
6 0

9514 1404 393

Answer:

  P(F|A) = 35%

Step-by-step explanation:

P(F|A) = P(F&A)/P(A) = 7%/20% = 0.35

P(F|A) = 35%

_____

The given numbers will let you fill in a table for all of the categories of workers. However, it turns out this question can be answered using only the numbers given in the problem statement.

You might be interested in
HELP PLEASE ILL GIVE U 50 POINTS​
klasskru [66]

Answer:

^{3} + 3x

Step-by-step explanation:

^{3} means x cubed.

4 0
3 years ago
Read 2 more answers
marco has a piece of wood that measures 9 x 1/10 6 x 1/100 4 x 1/1000 meter. how can this measurement be written as a decimal?
bagirrra123 [75]
If written as a decimal, 9 x 1/10 would be 9 x 0.1,
6 x 1/100 would be 6 x 0.01, and 4 x 1/1000 would be 4 x 0.001.
3 0
4 years ago
Someone help me with this <br><br> find points a b c
NISA [10]

Answer:

<a=32

<b=40

<c=40

Step-by-step explanation:

<em>to </em><em>find </em><em>angle </em><em>a </em><em>you </em><em>have </em><em>to </em><em>subtract</em><em> </em><em>the </em><em>5</em><em>0</em><em> </em><em>minus </em><em>1</em><em>8</em><em>0</em><em> </em><em>to </em><em>find </em><em>the </em><em>angle </em><em>close </em><em>to </em><em>the </em><em>5</em><em>0</em><em> </em><em>because</em><em> </em><em>angles</em><em> </em><em>in </em><em>a </em><em>straight</em><em> line</em><em> </em><em>add </em><em>up </em><em>to </em><em>1</em><em>8</em><em>0</em><em>.</em><em> </em><em>the </em><em>answer</em><em> </em><em>will </em><em>be</em>

<em>1</em><em>8</em><em>0</em><em>-</em><em>5</em><em>0</em><em>=</em><em>1</em><em>3</em><em>0</em>

<em>after </em><em>finding</em><em> </em><em>the </em><em>angle </em><em>in </em><em>that </em><em>triangle</em><em> </em><em>you </em><em>must </em><em>add </em><em>it </em><em>to </em><em>the </em><em>other </em><em>angle </em><em>present</em><em> </em><em>which </em><em>is </em><em>1</em><em>8</em><em>°</em><em> </em><em>then </em><em>subtract</em><em> </em><em>by </em><em>1</em><em>8</em><em>0</em><em> </em><em>because</em><em> </em><em>angles</em><em> </em><em>in </em><em>a </em><em>straight</em><em> </em><em>line </em><em>add </em><em>up </em><em>to </em><em>1</em><em>8</em><em>0</em>

<em>1</em><em>3</em><em>0</em><em>+</em><em>1</em><em>8</em><em>+</em><em>a=</em><em>1</em><em>8</em><em>0</em>

<em>a=</em><em>1</em><em>8</em><em>0</em><em>-</em><em>1</em><em>4</em><em>8</em>

<em>a=</em><em>3</em><em>2</em><em> </em><em>and </em><em>that's </em><em>how </em><em>you </em><em>find </em><em>a</em>

<em>to </em><em>find</em><em> </em><em>b </em><em>you </em><em>must </em><em>know </em><em>that </em><em>the </em><em>angle </em><em>at </em><em>the </em><em>center</em><em> is</em><em> </em><em>twice</em><em> </em><em>the </em><em>angle </em><em>at </em><em>the </em><em>circumference</em><em> </em><em>meaning</em><em> </em><em>the </em><em>large</em><em> </em><em>angle </em><em>C </em><em>is </em><em>9</em><em>0</em><em>°</em><em>,</em><em>now </em><em>if </em><em>it's</em><em> </em><em>9</em><em>0</em><em>°</em><em> </em><em>inorder </em><em>to </em><em>find</em><em> </em><em>the </em><em>big </em><em>angle </em><em>B </em><em>you </em><em>must </em><em>add </em><em>the </em><em>1</em><em>8</em><em>+</em><em>9</em><em>0</em><em> </em><em>then </em><em>subtract</em><em> </em><em>1</em><em>8</em><em>0</em>

<em>1</em><em>8</em><em>+</em><em>9</em><em>0</em><em>+</em><em>B=</em><em>1</em><em>8</em><em>0</em>

<em>B=</em><em>1</em><em>8</em><em>0</em><em>-</em><em>1</em><em>0</em><em>8</em>

<em>=</em><em>7</em><em>2</em>

<em>since </em><em>the </em><em>combination</em><em> </em><em>of </em><em>angle </em><em>a </em><em>and </em><em>b </em><em>will </em><em>give </em><em>you </em><em>7</em><em>2</em><em> </em><em>you </em><em>can </em><em>find </em><em>angle </em><em>c </em><em>by </em><em>subtracting</em><em> </em><em>a </em><em>from </em><em>7</em><em>2</em>

<em>c=</em><em>7</em><em>2</em><em>-</em><em>3</em><em>2</em>

<em>=</em><em>4</em><em>0</em>

<em>then </em><em>if </em><em>you </em><em>look </em><em>at </em><em>angle </em><em>c </em><em>and </em><em>angle </em><em>b</em><em> </em><em>you </em><em>can </em><em>tell </em><em>that </em><em>they </em><em>are </em><em>alternating</em><em> </em><em>meaning</em><em> </em><em>angle </em><em>b </em><em>is </em><em>also </em><em>4</em><em>0</em>

<em>I </em><em>hope</em><em> this</em><em> helps</em>

4 0
3 years ago
Find the average value of f(x)=2x^5 over the interval [1, 5].
Ulleksa [173]

Answer:

: let's recall that the average value of a function for an interval of (a,b) is given by formula: k=1b−a∫baf(x)dx where; k:average value k=16−2∫62(x2−2x+5)dx k=14(∣∣∣x33−2x22+5x∣∣∣62) k=14(∣∣∣x33−x2+5x∣∣∣62) k=14[(633−62+5⋅6)−(233−22+5⋅2)] k=14[(2163−36+30)−(83−4+10)] k=14[(2163−6)−(83+6)] k=14[216−183−8+183] k=14[1983−263] k=14[1723] k=17212

QuestionThe average of a function over an interval is computed as (1/width of interval) times the definite integral of the function evaluated over the interval. The indefinite integral of e^2x is (1/2)e^2x. So the answer is found by evaluating:(1/2)*[(1/2)[e^8 - e^4]], or (1/4)[e^8 - e^4]which equals about 731.6.

More

Brainly.com

Question

Find the average value of f(x)=2/x over the interval [1, 3].

Answer · 0 votes

\bf slope = m = \cfrac{rise}{run} \implies \cfrac{ f(x_2) - f(x_1)}{ x_2 - x_1}\impliedby \begin{array}{llll}average~rate\of~change\end{array}\\-------------------------------\\f(x)= \cfrac{2}{x} \qquad \begin{cases}x_1=1\x_2=3\end{cases}\implies \cfrac{f(3)-f(1)}{3-1}\implies \cfrac{\quad \frac{2}{3}-\frac{2}{1}\quad }{2}\\\\cfrac{\quad \frac{2-6}{3}\quad }{2}\implies \cfrac{\quad \frac{-4}{3}\quad }{\frac{2}{1}}\implies \cfrac{-4}{3}\cdot \cfrac{1}{2}\implies -\cfrac{2}{3}

More

Wyzant

Question

Find the average value of the function f(x)=x^3 over the interval [0,2] and find the value(s) of x at which the function assumes the average values

Answer · 0 votes

The average value of f is defined as: 1/(b-a)∫ f(x) dx (where integral is evaluated from a to b) If we are to integrate f(x) = x3 we get: (1/4)* (x4) Applying formula for average value: [1/(b-a)]*[(1/4)*(x4)]a to b Evaluating this result where a = 0 and b = 2: [1/(2-0)]*[(1/4)*(x4)]a to b =(1/2)*[((1/4)*x4)]a to b =(1/2)*[((1/4)*(2)4) - (2*(0^4))] =(1/2)*[((1/4)*16)-0] =(1/2)*(4) =2

The average rate of change over the interval [a,b], or the secant line between the points a and b on the function f(x), is [f(a) - f(b)]/[a-b]. So, substitute a for 1 and b for 5, and you get [f(1) - f(5)]/[1–5]. The quotient of that is your average rate of change.

the average value of f(x) on [a,b] is ∫[a,b] f(x) dx ----------------------- b-a f' = 3x^2-6x f = x^3-3x^2+4 so, you want ∫[-1,3] x^3-3x^2+4 dx -------------------------- 3 - (-1) which I'm sure you can do.

1/2 e 2 - 1/2 or 3.19 Given: ​f(x)=2x 2 e 2x ​ [0​, 1​] The average value of a function is: Where: a and b -intervals [a,b] f(x) - given function Substitute the values to the formula: In the integration of the function, we will use integration by parts: Let: u = 2x 2 dv = e 2x dx For du, get the derivative of u: du = 2(2x 2-1 ) = 4x dx For v, integrate dv: v = 1/2 e 2x Substitute the values to the integration by parts formula, and plug it in the solution: Get the integration by parts of xe 2x dx and let: u = x dv = e 2x dx for du,get the derivative of x du = dx For v, integrate dv v = 1/2 e 2x Substitute the values to the integration by parts formula, and plug it in the solution: Final answer: The average value of the function is 1/2 e 2 - 1/2 or 3.19

Step-by-step explanation:

plz brian list Oh and the real answer is  k=17212

6 0
3 years ago
What is the difference between a coefficient and variable (such as 3x) and a constant (5)?  Why can these two types of terms not
ANTONII [103]

Answer:

see below (I hope this makes sense!)

Step-by-step explanation:

Constants, as the name suggest, stay constant, meaning that their value never changes. For example, 2 will always be 2 and 9.4 will always be 9.4. On the other hand, the values of variables can change. Take, for example, the variable 2x. When x = 1, 2x = 2 and when x  =2, 2x = 4 so the value of 2x can change depending on what x is. You can't combine constants and variables because they are not like terms, basically, one can change and the other can't and you cannot combine terms that are not like each other.

3 0
3 years ago
Other questions:
  • What is the coefficient of the variable in the expression 6 − 4x − 8 + 2?
    7·2 answers
  • The 2016 Minneapolis Resident Survey was a questionnaire that the City of Minneapolis issued to its randomly chosen residents. I
    12·1 answer
  • she has 16 rabbits and feeds them one half cup of food every morning the bag she bought completely filled a five gallon bucket h
    6·1 answer
  • Round to the nearest cent<br><br> $1.6845
    15·2 answers
  • Caleb swam 50 yards in 30 seconds at the school swim meet. How many feet did he swim each second?
    7·1 answer
  • A power plant burns 12 tons of coal per day to generate electricity. Each ton of coal produces
    15·1 answer
  • If mr.s rivas has 256 donust and she needs to give the same amount of dounts to her 5 freinds
    11·2 answers
  • 9f-11=14f+4 what is the value of f in the equation
    7·2 answers
  • Passengers traveling by airplane have two options for their bags: carry-on (for smaller bags) or check (for large bags). An airl
    14·1 answer
  • Classify the following triangle.
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!