<span>Orthocenter is at (-3,3)
The orthocenter of a triangle is the intersection of the three heights of the triangle (a line passing through a vertex of the triangle that's perpendicular to the opposite side from the vertex. Those 3 lines should intersect at the same point and that point may be either inside or outside of the triangle. So, let's calculate the 3 lines (we could get by with just 2 of them, but the 3rd line acts as a nice cross check to make certain we didn't do any mistakes.)
Slope XY = (3 - 3)/(-3 - 1) = 0/-4 = 0
Ick. XY is a completely horizontal line and it's perpendicular will be a complete vertical line with a slope of infinity. But that's enough to tell us that the orthocenter will have the same x-coordinate value as vertex Z which is -3.
Slope XZ = (3 - 0)/(-3 - (-3)) = 3/0
Another ick. This slope is completely vertical. So the perpendicular will be complete horizontal with a slope of 0 and will have the same y-coordinate value as vertex Y which is 3.
So the orthocenter is at (-3,3).</span>
Answer:
Step-by-step explanation:
Answer: C
Step-by-step explanation: The numerator is the angle measure, and the denominator is the side length. For angle B, the angle is 47 degrees. The opposite side is b, which is 85. We are finding the angle A, which is the numerator. The side 94 is opposite of angle A.