Answer/Step-by-step explanation:
Area of trapezium = ½*(AD + BC)*AB
Area = 42 cm²
AD = (x + 8) cm
BC = (x + 5) cm
AB = x cm
Plug in the values into the equation
42 = ½((x + 8) + (x + 5))*x
42 = ½((x + 8 + x + 5)*x
42 = ½(2x + 13)*x
Multiply both sides by 2
42*2 = (2x + 13)*x
84 = 2x² + 13x
2x² + 13x = 84
Subtract both sides by 84
2x² + 13x - 84 = 0
The means and medians are <em><u>not</u></em><em><u> </u></em> the same.
Answer:
Hi there!
Your answer is:
Based off the equation we know that the slope is 1 and the y intercept is 6. We know that slope is rise/run so it goes UP one unit for every unit it goes RIGHT! We must start at the point (0,6) because that is the y intercept
Answer:
Quintrell's number is 9.
Step-by-step explanation:
Let
be equal to Quintrell's number.
"When 35 is added to my number, the answer is 4 times my original number plus 8."
⇒

Subtract both sides by 

Subtract both sides by 8

Divide both sides by 3

Therefore, Quintrell's number is 9.
I hope this helps!
Answer:
<h3><em><u>h</u></em><em><u>a</u></em><em><u>n</u></em><em><u>a</u></em><em><u>d</u></em><em><u> </u></em><em><u>a</u></em><em><u>h</u></em><em><u>m</u></em><em><u>e</u></em><em><u>d</u></em><em><u> </u></em><em><u>u</u></em><em><u>g</u></em><em><u>a</u></em><em><u>a</u></em><em><u>s</u></em><em><u> </u></em><em><u>m</u></em><em><u>o</u></em><em><u>h</u></em><em><u>m</u></em><em><u>e</u></em><em><u>d</u></em><em><u> </u></em><em><u>a</u></em><em><u>b</u></em><em><u>d</u></em><em><u>i</u></em><em><u> </u></em></h3>