Simplifying
5x(4y + 3x) = 5x(3x + 4y)
Reorder the terms:
5x(3x + 4y) = 5x(3x + 4y)
(3x * 5x + 4y * 5x) = 5x(3x + 4y)
Reorder the terms:
(20xy + 15x2) = 5x(3x + 4y)
(20xy + 15x2) = 5x(3x + 4y)
20xy + 15x2 = (3x * 5x + 4y * 5x)
Reorder the terms:
20xy + 15x2 = (20xy + 15x2)
20xy + 15x2 = (20xy + 15x2)
Add '-20xy' to each side of the equation.
20xy + -20xy + 15x2 = 20xy + -20xy + 15x2
Combine like terms: 20xy + -20xy = 0
0 + 15x2 = 20xy + -20xy + 15x2
15x2 = 20xy + -20xy + 15x2
Combine like terms: 20xy + -20xy = 0
15x2 = 0 + 15x2
15x2 = 15x2
Add '-15x2' to each side of the equation.
15x2 + -15x2 = 15x2 + -15x2
Combine like terms: 15x2 + -15x2 = 0
0 = 15x2 + -15x2
Combine like terms: 15x2 + -15x2 = 0
0 = 0
Solving
0 = 0
Couldn't find a variable to solve for.
This equation is an identity, all real numbers are solutions.
V = l • w • h
V = 10 • 18 • 3
V = 540 in cubed
F(x) =1/10 (10)x = x
Its reflection across the y-axis gives g(x)= -x
The attached graph represents the given function and its reflection
So the 3 investments were 72,000, 16,000, and 20,000
The function given is a composite function. Let's work from the outside in:

First step:
![\frac{d}{dx}[y]= \frac{d}{dx}[ln(sinh(2x))]](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdx%7D%5By%5D%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bln%28sinh%282x%29%29%5D)
Now, let's work it out:
![\frac{dy}{dx} = \frac{1}{sinh(2x) } * \frac{d}{dx}[sinh(2x)]](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20%5Cfrac%7B1%7D%7Bsinh%282x%29%20%7D%20%2A%20%20%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bsinh%282x%29%5D)
Next step:
![\frac{dy}{dx} = \frac{1}{sinh(2x) } * cosh(2x) * \frac{d}{dx}[2x]](https://tex.z-dn.net/?f=%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20%5Cfrac%7B1%7D%7Bsinh%282x%29%20%7D%20%2A%20cosh%282x%29%20%2A%20%20%5Cfrac%7Bd%7D%7Bdx%7D%5B2x%5D%20)
Next step:

Simplify:

Simplify further:

Remember that:

So,
your final answer is:
So, your answer is
C. Hope I could help you!