<h2>Volume = 4.19 inches³</h2>
<u>Step-by-step explanation:</u>
radius = 1 inches
π = 3.14
volume of SPHERE = 4/3 × π × radius³
= 4/3 × 3.14 × 1³
= 4.19 inches³
Answer:
The length of the chord is 16 cm
Step-by-step explanation:
Mathematically, a line from the center of the circle to a chord divides the chord into 2 equal portions
From the first part of the question, we can get the radius of the circle
The radius form the hypotenuse, the two-portions of the chord (12/2 = 6 cm) and the distance from the center to the chord forms the other side of the triangle
Thus, by Pythagoras’ theorem; the square of the hypotenuse equals the sum of the squares of the two other sides
Thus,
r^2 = 8^2 + 6^2
r^2= 64 + 36
r^2 = 100
r = 10 cm
Now, we want to get a chord length which is 6 cm away from the circle center
let the half-portion that forms the right triangle be c
Using Pythagoras’ theorem;
10^2 = 6^2 + c^2
c^2 = 100-36
c^2 = 64
c = 8
The full
length of the chord is 2 * 8 = 16 cm
Answer:
IV
In the fourth quadrant (IV).
Step-by-step explanation:
In the IV quadrant the x coordinate is always positive and the y coordinate is always negative. So the x coordinate is always larger than the y coordinate.
Just subtract the following number from the preceding one.
48- 3= 45
3- 45= -42.
m=-(5/4)
From left to right, (1,3) is first and then comes (5,-2). Always remember when finding slopes without equations, the rule is RISE over RUN, to the numerator and denominator, respectively.
The y value of the second coordinates becomes negative which is unlike the y value in the first coordinates, which means our slope is downward, meaning it has a negative sign in front.
In every slope, there’s a numerator, being the rise, and a denominator, being the run.
To find the rise, we must look at the y values. Starting at 3 going to -2 has a space of 5 units, making that our numerator.
To find the run, the first x value is 1 and the second is 5, making a space of 4, which is out denominator.
With these two numbers and the negative sign, we get -(5/4) as our slope.