Ok so this is conic sectuion
first group x's with x's and y's with y's
then complete the squra with x's and y's
2x^2-8x+2y^2+10y+2=0
2(x^2-4x)+2(y^2+5y)+2=0
take 1/2 of linear coeficient and square
-4/2=-2, (-2)^2=4
5/2=2.5, 2.5^2=6.25
add that and negative inside
2(x^2-4x+4-4)+2(y^2+5y+6.25-6.25)+2=0
factor perfect squares
2((x-2)^2-4)+2((y+2.5)^2-6.25)+2=0
distribute
2(x-2)^2-8+2(y+2.5)^2-12.5+2=0
2(x-2)^2+2(y+2.5)^2-18.5=0
add 18.5 both sides
2(x-2)^2+2(y+2.5)^2=18.5
divide both sides by 2
(x-2)^2+(y+2.5)^2=9.25
that is a circle center (2,-2.5) with radius √9.25
Answer:
f(x)=10+0.25x
she can put maximum 20 words
Step-by-step explanation:
f(x)<=15
10+0.25x<=15
0.25x<=5
x<=20
Answer:
please complete your question. where is figure.
Answer:
3000miles
Step-by-step explanation:
(┛❍ᴥ❍)┛彡┻━┻
Answer:
The answer is below
Step-by-step explanation:
The question is not complete, what are the coordinates of point Q and R. But I would show how to solve this.
The location of a point O(x, y) which divides line segment AB in the ratio a:b with point A at (
) and B(
) is given by the formula:

If point Q is at (
) and S at (
) and R(x, y) divides QS in the ratio QR to RS is 3:5, The coordinates of R is:

Let us assume Q(−9,4) and S(7,−4)
