Explanation:
Since {v1,...,vp} is linearly dependent, there exist scalars a1,...,ap, with not all of them being 0 such that a1v1+a2v2+...+apvp = 0. Using the linearity of T we have that
a1*T(v1)+a2*T(v1) + ... + ap*T(vp) = T(a1v19+T(a2v2)+...+T(avp) = T(a1v1+a2v2+...+apvp) = T(0) = 0.
Since at least one ai is different from 0, we obtain a non trivial linear combination that eliminates T(v1) , ..., T(vp). That proves that {T(v1) , ..., T(vp)} is a linearly dependent set of W.
Answer:
To solve for x the equation would be. (120 - 48) ÷ 2 = X
Step-by-step explanation:
This is because to follow pemdas you do the parenthesis first so you subtract both of the shorter sides. Next since there are two longer sides you divide by two to get the answer. Each longer side is equal to 36 inches.
Hope this helps
Answer:
312.38
Step-by-step explanation:
first get the area of the circle which will be 490.625 then subtract the rectangle to get the round area with grass-290.625
then in that square there is a triangle covered with grass so get the area of the triangle-22.75 then add the area of the triangle to the rounded part with grass
<span>3down votefavorite1Find minimum and maximum value of function <span>f(x,y)=3x+4y+|x−y|</span> on circle<span>{(x,y):<span>x2</span>+<span>y2</span>=1}</span>I used polar coordinate system. So I have <span>x=cost</span> and <span>y=sint</span> where <span>t∈[0,2π)</span>.Then i exploited definition of absolute function and i got:<span>h(t)=<span>{<span><span>4cost+3sintt∈[0,<span>π4</span>]∪[<span>54</span>π,2π)</span><span>2cost+5sintt∈(<span>π4</span>,<span>54</span>π)</span></span></span></span>Hence i received following critical points (earlier i computed first derivative):<span>cost=±<span>45</span>∨cost=±<span>2<span>√29</span></span></span>Then i computed second derivative and after all i received that in <span>(<span>2<span>√29</span></span>,<span>5<span>√29</span></span>)</span> is maximum equal <span>√29</span> and in <span>(−<span>45</span>,−<span>35</span>)</span> is minimum equal <span>−<span>235</span></span><span>
</span></span>
Start with

Multiply the whole equation by 2. Since 2 is positive, we don't need to switch the inequality sign:

Subtract 3 from both sides:
