Answer:
11/12
Step-by-step explanation:you have to turn all the mixed numbers into improper fraction so 1 1/3 is 16/12 1 1/4 is 15/12 and if you add them you get 2 7/12 and that minus 3 6/12 is 11/12
Answer:
None of these.
Step-by-step explanation:
Let's assume we are trying to figure out if (x-6) is a factor. We got the quotient (x^2+6) and the remainder 13 according to the problem. So we know (x-6) is not a factor because the remainder wasn't zero.
Let's assume we are trying to figure out if (x^2+6) is a factor. The quotient is (x-6) and the remainder is 13 according to the problem. So we know (x^2+6) is not a factor because the remainder wasn't zero.
In order for 13 to be a factor of P, all the terms of P must be divisible by 13. That just means you can reduce it to a form that is not a fraction.
If we look at the first term x^3 and we divide it by 13 we get
we cannot reduce it so it is not a fraction so 13 is not a factor of P
None of these is the right option.
Answer:
x = (5 + i sqrt(15))/4 or x = (5 - i sqrt(15))/4
Step-by-step explanation:
Solve for x:
2 x^2 - 5 x + 5 = 0
Hint: | Using the quadratic formula, solve for x.
x = (5 ± sqrt((-5)^2 - 4×2×5))/(2×2) = (5 ± sqrt(25 - 40))/4 = (5 ± sqrt(-15))/4:
x = (5 + sqrt(-15))/4 or x = (5 - sqrt(-15))/4
Hint: | Express sqrt(-15) in terms of i.
sqrt(-15) = sqrt(-1) sqrt(15) = i sqrt(15):
Answer: x = (5 + i sqrt(15))/4 or x = (5 - i sqrt(15))/4