1
P(V|A) is not 0.95. It is opposite:
P(A|V)=0.95
From the text we can also conclude, that
P(A|∼V)=0.1
P(B|V)=0.9
P(B|∼V)=0.05
P(V)=0.01
P(∼V)=0.99
What you need to calculate and compare is P(V|A) and P(V|B)
P(V∩A)=P(A)⋅P(V|A)⇒P(V|A)=P(V∩A)P(A)
P(V∩A) means, that Joe has a virus and it is detected, so
P(V∩A)=P(V)⋅P(A|V)=0.01⋅0.95=0.0095
P(A) is sum of two options: "Joe has virus and it is detected" and "Joe has no virus, but it was mistakenly detected", therefore:
P(A)=P(V)⋅P(A|V)+P(∼V)⋅P(A|∼V)=0.01⋅0.95+0.99⋅0.1=0.1085
Answer:

Step-by-step explanation:

Hope this helps ;) ❤❤❤
• Given the table of values, you can identify these points:

If you plot them on a Coordinate Plane, you get:
As you can observe, it is a Linear Function.
• The equation of a line in Slope-Intercept Form is:

Where "m" is the slope of the line and "b" is the y-intercept.
In this case, you can identify in the graph that:

Therefore, you can substitute that value and the coordinates of one of the points on the line, into this equation:

And then solve for "m", in order to find the slope of the line.
Using this point:

You get:

Therefore, the equation for the data in Slope-Intercept Form is:

Hence, the answer is:
• It represents a Linear Function.
,
• Equation: