The containers must be spheres of radius = 6.2cm
<h3>
How to minimize the surface area for the containers?</h3>
We know that the shape that minimizes the area for a fixed volume is the sphere.
Here, we want to get spheres of a volume of 1 liter. Where:
1 L = 1000 cm³
And remember that the volume of a sphere of radius R is:

Then we must solve:
![V = \frac{4}{3}*3.14*R^3 = 1000cm^3\\\\R =\sqrt[3]{ (1000cm^3*\frac{3}{4*3.14} )} = 6.2cm](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B4%7D%7B3%7D%2A3.14%2AR%5E3%20%3D%201000cm%5E3%5C%5C%5C%5CR%20%3D%5Csqrt%5B3%5D%7B%20%20%281000cm%5E3%2A%5Cfrac%7B3%7D%7B4%2A3.14%7D%20%29%7D%20%3D%206.2cm)
The containers must be spheres of radius = 6.2cm
If you want to learn more about volume:
brainly.com/question/1972490
#SPJ1
For this case we have the following quadratic equation:

Where:

By definition, the discriminant of a quadratic equation is given by:

We have to:
Two different real roots
Two different complex roots
Two equal real roots
Substituting the values we have:

So, we have two different complex roots
Answer:
Two different complex roots
Part A:
The average rate of change refers to a function's slope. Thus, we are going to need to use the slope formula, which is:

and
are points on the function
You can see that we are given the x-values for our interval, but we are not given the y-values, which means that we will need to find them ourselves. Remember that the y-values of functions refers to the outputs of the function, so to find the y-values simply use your given x-value in the function and observe the result:




Now, let's find the slopes for each of the sections of the function:
<u>Section A</u>

<u>Section B</u>

Part B:
In this case, we can find how many times greater the rate of change in Section B is by dividing the slopes together.

It is 25 times greater. This is because
is an exponential growth function, which grows faster and faster as the x-values get higher and higher. This is unlike a linear function which grows or declines at a constant rate.
Answer:
4,500,000 population in 1950
Step-by-step explanation:
the equation is 4p + 1,000,000 = 19,800,000
The correct answer is C. One