1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bezzdna [24]
3 years ago
7

-1.2= y/2.4 -1.7 Solve for y

Mathematics
1 answer:
evablogger [386]3 years ago
4 0

{\huge{\boxed{\sf{Question}}

-1.2= y\div2.4 -1.7

Solve for y

{\huge{\boxed{\sf{Answer\:with\:explanation }}}

let's put our equation first

-1.2= y\div2.4 -1.7

Flip the equation

y\div2.4-1.7=-1.2

Now follow the rule of BOMDAS/PEMDAS

{\huge{\boxed{\sf{BOMDAS }}}

  • Brackets
  • Of multiplication
  • Division
  • Addition
  • Subtraction

{\huge{\boxed{\sf{PEMDAS}}}

  • Parenthesis
  • Exponents
  • Multiplication
  • Division
  • Addition
  • Subtraction

_________________________

{\huge{\boxed{\sf{Solve\:the\:equation}}}

_________________________

y\div2.4-1.7=-1.2

{\underline{simplify}}

0.416667y-1.7=-1.2

add 1.7 to both sides

0.416667y=0.5

Divide both sides by 0.416667

y=1.2

{\huge{\boxed{\sf{Answer}}}

y would equal 1.2

You might be interested in
Help me with trigonometry
poizon [28]

Answer:

See below

Step-by-step explanation:

It has something to do with the<em> </em><u><em>Weierstrass substitution</em></u>, where we have

$\int\, f(\sin(x), \cos(x))dx = \int\, \dfrac{2}{1+t^2}f\left(\dfrac{2t}{1+t^2}, \dfrac{1-t^2}{1+t^2} \right)dt$

First, consider the double angle formula for tangent:

\tan(2x)= \dfrac{2\tan(x)}{1-\tan^2(x)}

Therefore,

\tan\left(2 \cdot\dfrac{x}{2}\right)= \dfrac{2\tan(x/2)}{1-\tan^2(x/2)} = \tan(x)=\dfrac{2t}{1-t^2}

Once the double angle identity for sine is

\sin(2x)= \dfrac{2\tan(x)}{1+\tan^2(x)}

we know \sin(x)=\dfrac{2t}{1+t^2}, but sure,  we can derive this formula considering the double angle identity

\sin(x)= 2\sin\left(\dfrac{x}{2}\right)\cos\left(\dfrac{x}{2}\right)

Recall

\sin \arctan t = \dfrac{t}{\sqrt{1 + t^2}} \text{ and } \cos \arctan t = \dfrac{1}{\sqrt{1 + t^2}}

Thus,

\sin(x)= 2 \left(\dfrac{t}{\sqrt{1 + t^2}}\right) \left(\dfrac{1}{\sqrt{1 + t^2}}\right) = \dfrac{2t}{1 + t^2}

Similarly for cosine, consider the double angle identity

Thus,

\cos(x)=  \left(\dfrac{1}{\sqrt{1 + t^2}}\right)^2- \left(\dfrac{t}{\sqrt{1 + t^2}}\right)^2 = \dfrac{1}{t^2+1}-\dfrac{t^2}{t^2+1} =\dfrac{1-t^2}{1+t^2}

Hence, we showed \sin(x) \text { and } \cos(x)

======================================================

5\cos(x) =12\sin(x) +3, x \in [0, 2\pi ]

Solving

5\,\overbrace{\frac{1-t^2}{1+t^2}}^{\cos(x)} = 12\,\overbrace{\frac{2t}{1+t^2}}^{\sin(x)}+3

\implies \dfrac{5-5t^2}{1+t^2}= \dfrac{24t}{1+t^2}+3 \implies  \dfrac{5-5t^2 -24t}{1+t^2}= 3

\implies 5-5t^2-24t=3\left(1+t^2\right) \implies -8t^2-24t+2=0

t = \dfrac{-(-24)\pm \sqrt{(-24)^2-4(-8)\cdot 2}}{2(-8)} = \dfrac{24\pm 8\sqrt{10}}{-16} =  \dfrac{3\pm \sqrt{10}}{-2}

t=-\dfrac{3+\sqrt{10}}{2}\\t=\dfrac{\sqrt{10}-3}{2}

Just note that

\tan\left(\dfrac{x}{2}\right) =  \dfrac{3\pm 8\sqrt{10}}{-2}

and  \tan\left(\dfrac{x}{2}\right) is not defined for x=k\pi , k\in\mathbb{Z}

6 0
3 years ago
Perform the indicated operation. 10 3/7 + 19 5/9
DanielleElmas [232]
Given expression is

10 \frac{3}{7} + 19 \frac{5}{9}

Now convert mixed fraction as improper fraction as

10 \frac{3}{7} + 19 \frac{5}{9} =  \frac{10*7 + 3}{7} +  \frac{19*9+5}{9}
                                                         =  \frac{73}{7}  +  \frac{176}{9}
                                                          =  \frac{73*9 + 176 * 7}{63}
                                                         =  \frac{657 + 1232}{63} =  \frac{1889}{63}
Now we can convert \frac{1889}{63 } = 29 \frac{62}{63}

So the answer is 29 \frac{62}63}
4 0
4 years ago
Read 2 more answers
Differentiate x^2/4-x^3​
Ede4ka [16]

Answer:

  x^4 + 8x          

  -----------------

    (4-x^3)^2

Step-by-step explanation:

d /dx  (x^2/(4-x^3)​)

When we differentiate a fraction u/v

df/dx = u/v

         =  v du/dx-u dv/dx

           ---------------------------

                         v^2

we know u = x^2   so du/dx = 2x

               v = (4-x^3)  so dv/dx = -3x^2

d dx =   (4-x^3) (2x)- x^2 ( -3x^2)

           -------------------------------------

                   (4-x^3)^2

Combining terms

           (8x-2x^4) --3x^4

           -------------------------------------

                   (4-x^3)^2

           8x-2x^4 +3x^4

           -------------------------------------

                   (4-x^3)^2

             x^4 + 8x          

           -------------------------------------

                   (4-x^3)^2

8 0
3 years ago
Can anyone help me with this?<br> Thank you
Sergeeva-Olga [200]

1. 3,6

2. 5,6

3. 4,5

(branliest will be appreciated and thanks)

8 0
3 years ago
Read 2 more answers
..1+4=5. 2+5=12. 3+6=21. 8+11=40 or this could be 96 which is right and why
andre [41]
Multiply the numbers being added then add the first number. 4X1=4, 4+1=5.
2X5=10, 10+2=12. 11X8=88, 88+8=96. I'm not sure how to get 40, though. 
Hope I could help.
7 0
3 years ago
Other questions:
  • Suppose SAT Writing scores are normally distributed with a mean of 498 and a standard deviation of 108. A university plans to aw
    9·1 answer
  • 98 Points And Brainliest!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!A poll asked 15 men in two age groups, 30 and younger and older than 3
    5·1 answer
  • Real populations sometimes increase beyond their environment’s carrying capacity in a relatively short period of time. What is t
    11·1 answer
  • I need help with this problem ASAP please i have until tmrw to finish my course entirely so if anyone can help it would be great
    9·1 answer
  • Chase makes $8 an hour working after school and $10 an hour working on saturdays. Last week he made $156 working a total of 18 h
    5·1 answer
  • A line is drawn through (–7, 11) and (8, –9). The equation y – 11 = y minus 11 equals StartFraction negative 4 Over 3 EndFractio
    14·2 answers
  • What is the product of 25 and (6/5n + 3 1/4)​
    5·1 answer
  • . Do the points P (-2, -3), Q (4, 1) and R (2, 4) form a right triangle?
    5·1 answer
  • Pls solve this it is math no scams ty
    9·2 answers
  • PLZZZ HELPPPP ILL MARK BRAINLIEST TO FIRST AND CORRECT ANSWER THAT HAS WORK AND A THX TO SECOND AND CORRECT ANSWER.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!