Answer:
See below
Step-by-step explanation:
It has something to do with the<em> </em><u><em>Weierstrass substitution</em></u>, where we have

First, consider the double angle formula for tangent:

Therefore,

Once the double angle identity for sine is

we know
, but sure, we can derive this formula considering the double angle identity

Recall

Thus,
Similarly for cosine, consider the double angle identity
Thus,

Hence, we showed 
======================================================
![5\cos(x) =12\sin(x) +3, x \in [0, 2\pi ]](https://tex.z-dn.net/?f=5%5Ccos%28x%29%20%3D12%5Csin%28x%29%20%2B3%2C%20x%20%5Cin%20%5B0%2C%202%5Cpi%20%5D)
Solving





Just note that

and
is not defined for 
Answer:
x^4 + 8x
-----------------
(4-x^3)^2
Step-by-step explanation:
d /dx (x^2/(4-x^3))
When we differentiate a fraction u/v
df/dx = u/v
= v du/dx-u dv/dx
---------------------------
v^2
we know u = x^2 so du/dx = 2x
v = (4-x^3) so dv/dx = -3x^2
d dx = (4-x^3) (2x)- x^2 ( -3x^2)
-------------------------------------
(4-x^3)^2
Combining terms
(8x-2x^4) --3x^4
-------------------------------------
(4-x^3)^2
8x-2x^4 +3x^4
-------------------------------------
(4-x^3)^2
x^4 + 8x
-------------------------------------
(4-x^3)^2
1. 3,6
2. 5,6
3. 4,5
(branliest will be appreciated and thanks)
Multiply the numbers being added then add the first number. 4X1=4, 4+1=5.
2X5=10, 10+2=12. 11X8=88, 88+8=96. I'm not sure how to get 40, though.
Hope I could help.