1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wariber [46]
3 years ago
7

Does (7,5) make the inequality 16x + 16y 2 12 true?

Mathematics
1 answer:
Black_prince [1.1K]3 years ago
4 0
Yep because 16y and 16y makes the inequality
You might be interested in
PLEASE HELP RATIOS TABLES DUE TOMARROW!!!!!!
Rasek [7]

Since the ratio is as simple as 1:2, just double each Euro value.

1:2, 2:4, 5:10, 10:20.


8 0
4 years ago
Read 2 more answers
Brainiest if correct or first<br> 1/2(6x+1/2)
Alexxx [7]

Step-by-step explanation:

1/2(6x+1/2)=0

3x+1/4=0

3X=-1/4

X=3(-1/4)

X=-3/4

OR

X=-.75

8 0
3 years ago
Read 2 more answers
What is 38.88 divided by 8
Naya [18.7K]
4.86 is the answer to you're question.
4 0
3 years ago
Read 2 more answers
I WILL GIVE BRAINLIEST!!!
zimovet [89]

Not equivalent to any of the given expressions.

Step-by-step explanation:

{7}^{2m} . {6}^{2m}  \\  \\  = (7.6) ^{2m}  \\  \\  =  {42}^{2m}

Hence, {42}^{2m} is not equivalent to any of the given expressions.

6 0
3 years ago
Read 2 more answers
Evaluate the interval (Calculus 2)
Darya [45]

Answer:

2 \tan (6x)+2 \sec (6x)+\text{C}

Step-by-step explanation:

<u>Fundamental Theorem of Calculus</u>

\displaystyle \int \text{f}(x)\:\text{d}x=\text{F}(x)+\text{C} \iff \text{f}(x)=\dfrac{\text{d}}{\text{d}x}(\text{F}(x))

If differentiating takes you from one function to another, then integrating the second function will take you back to the first with a constant of integration.

Given indefinite integral:

\displaystyle \int \dfrac{12}{1-\sin (6x)}\:\:\text{d}x

\boxed{\begin{minipage}{5 cm}\underline{Terms multiplied by constants}\\\\$\displaystyle \int a\:\text{f}(x)\:\text{d}x=a \int \text{f}(x) \:\text{d}x$\end{minipage}}

If the terms are multiplied by constants, take them outside the integral:

\implies 12\displaystyle \int \dfrac{1}{1-\sin (6x)}\:\:\text{d}x

Multiply by the conjugate of 1 - sin(6x) :

\implies 12\displaystyle \int \dfrac{1}{1-\sin (6x)} \cdot \dfrac{1+\sin(6x)}{1+\sin(6x)}\:\:\text{d}x

\implies 12\displaystyle \int \dfrac{1+\sin(6x)}{1-\sin^2(6x)} \:\:\text{d}x

\textsf{Use the identity} \quad \sin^2 x+ \cos^2 x=1:

\implies \sin^2 (6x) + \cos^2 (6x)=1

\implies \cos^2 (6x)=1- \sin^2 (6x)

\implies 12\displaystyle \int \dfrac{1+\sin(6x)}{\cos^2(6x)} \:\:\text{d}x

Expand:

\implies 12\displaystyle \int \dfrac{1}{\cos^2(6x)}+\dfrac{\sin(6x)}{\cos^2(6x)} \:\:\text{d}x

\textsf{Use the identities }\:\: \sec \theta=\dfrac{1}{\cos \theta} \textsf{ and } \tan\theta=\dfrac{\sin \theta}{\cos \theta}:

\implies 12\displaystyle \int \sec^2(6x)+\dfrac{\tan(6x)}{\cos(6x)} \:\:\text{d}x

\implies 12\displaystyle \int \sec^2(6x)+\tan(6x)\sec(6x) \:\:\text{d}x

\boxed{\begin{minipage}{5 cm}\underline{Integrating $\sec^2 kx$}\\\\$\displaystyle \int \sec^2 kx\:\text{d}x=\dfrac{1}{k} \tan kx\:\:(+\text{C})$\end{minipage}}

\boxed{\begin{minipage}{6 cm}\underline{Integrating $ \sec kx \tan kx$}\\\\$\displaystyle \int  \sec kx \tan kx\:\text{d}x= \dfrac{1}{k}\sec kx\:\:(+\text{C})$\end{minipage}}

\implies 12 \left[\dfrac{1}{6} \tan (6x)+\dfrac{1}{6} \sec (6x) \right]+\text{C}

Simplify:

\implies \dfrac{12}{6} \tan (6x)+\dfrac{12}{6} \sec (6x)+\text{C}

\implies 2 \tan (6x)+2 \sec (6x)+\text{C}

Learn more about indefinite integration here:

brainly.com/question/27805589

brainly.com/question/28155016

3 0
2 years ago
Other questions:
  • 6) -(-2-n) what is the answer?
    10·1 answer
  • Pleaseeeeeee help!!!!
    8·1 answer
  • How to make 9/7 to a simplified fraction?
    9·1 answer
  • Identify the correct slope and y intercept of the equation 2x + 4y = 12.
    10·1 answer
  • HALP PLeAASE i will give brainly ;D
    5·1 answer
  • amrya has sixty hundredths of a dollar.how much money does amrya have written as a fraction in simplest form?
    12·2 answers
  • Which three types of transformations result in congruent shapes?
    9·1 answer
  • Helppp I’m not good with this stuff lol
    8·1 answer
  • Expand brackets 4(y+2)
    12·2 answers
  • Select the correct answer.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!