Answer:
Slope-Intercept form: y=x+3
Step-by-step explanation:
The Slope-Intercept form is y=mx+b
You first have to find the slope. You can use the graph and count or you can use the table and use the slope formula
. You then have to find (b) which is the y-intercept. You can find this easily using the graph or the table.
Answer:
The proportion of infants with birth weights between 125 oz and 140 oz is 0.1359 = 13.59%.
Step-by-step explanation:
When the distribution is normal, we use the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this question, we have that:

The proportion of infants with birth weights between 125 oz and 140 oz is
This is the pvalue of Z when X = 140 subtracted by the pvalue of Z when X = 125. So
X = 140



has a pvalue of 0.9772
X = 125



has a pvalue of 0.8413
0.9772 - 0.8413 = 0.1359
The proportion of infants with birth weights between 125 oz and 140 oz is 0.1359 = 13.59%.
120^ is the answer for this problem

so, as you can see above, the common ratio r = 1/2, now, what term is +4 anyway?


so is the 8th term, then, let's find the Sum of the first 8 terms.

![\bf S_8=512\left[ \cfrac{1-\left( \frac{1}{2} \right)^8}{1-\frac{1}{2}} \right]\implies S_8=512\left(\cfrac{1-\frac{1}{256}}{\frac{1}{2}} \right)\implies S_8=512\left(\cfrac{\frac{255}{256}}{\frac{1}{2}} \right)\\\\\\S_8=512\cdot \cfrac{255}{128}\implies S_8=1020](https://tex.z-dn.net/?f=%20%5Cbf%20S_8%3D512%5Cleft%5B%20%5Ccfrac%7B1-%5Cleft%28%20%5Cfrac%7B1%7D%7B2%7D%20%5Cright%29%5E8%7D%7B1-%5Cfrac%7B1%7D%7B2%7D%7D%20%5Cright%5D%5Cimplies%20S_8%3D512%5Cleft%28%5Ccfrac%7B1-%5Cfrac%7B1%7D%7B256%7D%7D%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20%5Cright%29%5Cimplies%20S_8%3D512%5Cleft%28%5Ccfrac%7B%5Cfrac%7B255%7D%7B256%7D%7D%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%20%5Cright%29%5C%5C%5C%5C%5C%5CS_8%3D512%5Ccdot%20%5Ccfrac%7B255%7D%7B128%7D%5Cimplies%20S_8%3D1020%20)