Answer:
m∠1 = 41°
m∠2 = 85°
m∠3 = 95°
m∠4 = 85°
m∠5 = 36°
m∠6 = 49°
m∠7 = 96°
Step-by-step explanation:
Alright, so to start we have 2 quadrilaterals intersecting to form a triangle, which means that in the shapes with 4 angles, all angles will add up to 360°, while the triangle's angles will add up to 180°
Right off the bat, we can tell that ∠3 and ∠95° are going to be the same, because they're at a perpendicular intersection, which also means that ∠2 and ∠4 will be the same as well
Knowing the ∠3 = 95° means that ∠5 and ∠6 must add up to equal 85°, so that the whole of the triangle equals 180°
Considering that in the first quadrilateral we already have ∠90° and ∠144°, this means that ∠1 and ∠2 have to add up to 126°, to make an even 360° total
If ∠95° is supplementary to ∠2, this means ∠2 = 85°, and since ∠4 and ∠2 are the same, ∠4 also equals 85° - This leaves 41° left for ∠1, and now we can move on to the other quadrilateral
So since we know ∠4 = 85°, and we already have ∠38°, this means that ∠7 and the unmarked angle will add up to equal 237°, so that the entire shape has 360°
Since we know that ∠5 and ∠144° are supplementary, this means ∠5 is equal to 36°, which would make ∠6 = 39°
And lastly we have ∠7, which since ∠6 = 39° this means our unmarked supplementary angle must equal 141° - Now that means that ∠4 + ∠38° + ∠141° = 264° out of 360°, which leaves ∠7 to equal 96°