Answer:
The whole number dimension that would allow the student to maximize the volume while keeping the surface area at most 160 square is 6 ft
Step-by-step explanation:
Here we are required find the size of the sides of a dunk tank (cube with open top) such that the surface area is ≤ 160 ft²
For maximum volume, the side length, s of the cube must all be equal ;
Therefore area of one side = s²
Number of sides in a cube with top open = 5 sides
Area of surface = 5 × s² = 180
Therefore s² = 180/5 = 36
s² = 36
s = √36 = 6 ft
Therefore, the whole number dimension that would allow the student to maximize the volume while keeping the surface area at most 160 square = 6 ft.
-28 because using PEMDAS you would do -5x8 which =-40 plus 12 is -28
Answer:
Step-by-step explanation:
a
Take 2202 divide by 11, then multiply that by 3 & there's your answer.