Answer:
region 2 and region 3
Explanation:
you can tell by the color of the land my friends^^
Pick up plastic, reduce waste, reduce pollutants
<span>The reason it will be 7 for some titrations is that when you titrates a strong acid with a strong base for example HCl and NaOH the salt formed is conjugate base of strong acid and will be a very weak base
That means that it cannot produce any OH^-1 and all the H+ has been converted to water.The only source of H+ or OH is water with a Ka of 10^-14 so the pH = -log [H+]=-log 10^-7 = 7
second reason is
When you titrates a weak acid with strong base at equivalence point
only a water solution of the conjugate base exists
CH3COOH + NaOH ----- Na+ CH3COO^-1 + H2O
Since the conjugate base is the conjugate base of a weak acid it will hydrolyze in water like so
for instance Na+ CH3COO^-1 + HCl---- CH3COOH + NaCl the equivalence point will be way BELOW 7 and in the case of above will be less than 5. So pH of 7 at equivalence point is only reached in strong acid strong base titrations.
hope this helps</span>
Answer:
CH3OH + 02 ----> C02 + H20
balanced equation -
CH3OH + 3/202 ----> C02 + 2H20
Use exactly the same process as the one used on another question of yours I answered.
Answer:
Li2S> Na2S> K2S> CsS
Explanation:
The lattice energy of ionic species depends on the relative sizes of ions in the ionic compounds. As the size of ions increases, the lattice energy decreases and vice versa.
When the size of the anions are the same, the lattice energy now depends on the relative sizes of the cations. Therefore, since all the compounds are sulphides and the order of magnitude of ionic sizes is: Li^+ < Na^+ < K^+ < Cs^+.
Therefore, the order of decrease in lattice energy is; Li2S> Na2S> K2S> CsS