⭐ Elements in which the last electron enters any one of the five d-oribitals of their respective penultimate shells are called as <u>d-block</u><u> </u><u>elem</u><u>ents</u> .
⭐ But the last electron of Zn , Cd , Hg and Cn enters in the s-oribital of their respective ultimate shells rather than the d-oribitals of their respective penultimate shells . Therefore, these elements cannot be regarded as d-block elements .
☃️ But properties of these elements resemble to the d-block elements rather than s-block elements .
☃️ Therefore, to make the study of periodic classification of elements more rational, they are studied along with d-block elements .
✍️ Thus <u>on the basis of properties</u> all transition elements are d- block elements, but <u>on the basis of electronic configuration</u> all d -block elements are not transition elements .
Answer:The only one difference is that ozone is made up of three oxygen atoms, while the stuff we breathe is made up of only two atoms.
Explanation:
<u>Answer:</u> When the enthalpy of this overall chemical equation is calculated, the enthalpy of the second intermediate equation is halved and has its sign changed.
<u>Explanation:</u>
Hess’s law of constant heat summation states that the amount of heat absorbed or evolved in a given chemical equation remains the same whether the process occurs in one step or several steps.
According to this law, the chemical equation is treated as ordinary algebraic expressions and can be added or subtracted to yield the required equation. This means that the enthalpy change of the overall reaction is equal to the sum of the enthalpy changes of the intermediate reactions.
The overall chemical reaction follows:
The intermediate balanced chemical reaction are:
(1)
(2)
The expression for enthalpy of the reaction follows:
Hence, when the enthalpy of this overall chemical equation is calculated, the enthalpy of the second intermediate equation is halved and has its sign changed.
Answer:
4552 mL
Explanation:
From the question given above, the following data were obtained:
Volume of stock solution (V₁) = 55 mL
Molarity of stock solution (M₁) = 12 M
Molarity of diluted solution (M₂) = 0.145 M
Volume of diluted solution (V₂) =?
The volume of the diluted solution can be obtained by using the dilution formula as illustrated below:
M₁V₁ = M₂V₂
12 × 55 = 0.145 × V₂
660 = 0.145 × V₂
Divide both side by 0.145
V₂ = 660 / 0.145
V₂ ≈ 4552 mL
Thus, the volume of the diluted solution is 4552 mL
Answer:
Exothermic reaction
Explanation:
Since in an exothermic reaction heat is released, the products will be more stable than the reactants.