The bond energy of each carbon-oxygen bond in carbon dioxide is d. 736 kJ
Since the chemical reaction is 2CO + O₂ → 2CO₂ and the total bond energy of the products carbon dioxide CO₂ is 1,472 kJ.
Since from the chemical reaction, we have 2 moles of CO₂ which gives 1,472 kJ and there are two carbon-oxygen, C-O bonds in CO₂, then
2 × C-O bond = 1,472 kJ
1 C-O bond = 1.472 kJ/2
C-O bond = 736 kJ
So, the bond energy of each carbon-oxygen bond in carbon dioxide is d. 736 kJ
Learn more about bond energy here:
brainly.com/question/21670527
Stoichiometry time! Remember to look at the equation for your molar ratios in other problems.
31.75 g Cu | 1 mol Cu | 2 mol Ag | 107.9 g Ag 6851.65
⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻ → ⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻ = 107.9 g Ag
∅ | 63.5 g Cu | 1 mol Cu | 1 mol Ag 63.5
There's also a shorter way to do this: Notice the molar ratio from Cu to Ag, which is 1:2. When you plug in 31.75 into your molar mass for Cu, it equals 1/2 mol. That also means that you have 1 mol Ag because of the ratio, qhich you can then plug into your molar mass, getting 107.9 as well.
Answer is A bc you can get electrocuted
In rubidium oxide - Rb₂O , the ions are Rb⁺ and O²⁻
Rb is a group one element with one valence electron. To become stable it loses its outer electron to gain a complete outer shell.
Electronic configuration of Rb is - 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 5s¹
Once it loses its valence electron the configuration is;
- 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶
The noble gas with this configuration is Krypton - Kr
Oxygen electron configuration is 1s² 2s² 2p⁴
Once it gains 2 electrons the configuration is - 1s² 2s² 3p⁶
The noble gas with this configuration is Neon - Ne