Answer:
the correct option would be:
The group of response options implies a reduction in the intensity of the workouts with a corresponding increase in the percentage of carbohydrate intake for several days before a competition.
Since the carbohydrate load is an increase in glycogen reserves as an energy source accompanied by a decrease in muscle demand. This is often used in high-performance activities, where strict competencies are required.
Although today some professionals do not support that, but rather support a diet with carbohydrates and proteins.
Explanation:
Carbohydrate loading increases glycogen reserves, it is accompanied by a muscle rest plan, without fatigue of muscle fibers.
The purpose of this is to exhaust the muscle fibers in maximum demands such as the competencies, ensuring a necessary energy source that supplies this reaction, for which glycogen reserves are needed.
6.2 grams of CO2 = 1.408786739226764 moles
Answer:
56.2
Explanation:
<u>mark</u><u> </u><u>me as</u><u> </u><u>BRAINLIEST</u><u> </u>
<u>follow me</u><u> </u>
<u>carry on</u><u> </u><u>learning</u><u> </u>
<u>100</u><u> </u><u>%</u><u>sure</u><u> </u>
Answer:
Number of Na ions in 14.5 g of NaCl is 1.49 × 10²³.
Number of Cl ions in 14.5 g of NaCl is 1.49 × 10²³.
Total number of ions = 1.49 × 10²³ + 1.49 × 10²³ = 2.98 × 10²³.
Explanation:
1 mole of any compound contains 6.023 × 10²³ molecules.
molecular weight of NaCl is 23 + 35.5 = 58.5 g.
so, 58.5 grams of NaCl makes 1 mole
⇒ 14.5 g of NaCl =
= 0.248 moles.
⇒ 0.248 mole contains 0.248 × 6.023×10²³ molecules
= 1.49 × 10²³ molecules.
And 1 molecule contains 1 Na ion and 1 Cl ion.
⇒ number of Na ions in 14.5 g of NaCl is 1.49 × 10²³.
⇒ number of Cl ions in 14.5 g of NaCl is 1.49 × 10²³.
Total number of ions = 1.49 × 10²³ + 1.49 × 10²³ = 2.98 × 10²³.
Answer:
5NO2? + 6H+ + 2MnO4? ? 5NO3? +2Mn2+ + 3H2O
Explanation:
Classify each reactant as the reducing agent, oxidizing agent, or neither