Answer:
Group 2A — The Alkaline Earth Metals. Group 2A (or IIA) of the periodic table are the alkaline earth metals: beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).
Explanation:
The increase in the boiling point of a solvent is a colligative property.
That means that the increase in the boling point will be related to the number of particles (molecules or ions) present in the solution.
The higher the number of particles (molecules or ions) the higher the increase in the boiling point.
All the aqueous solutions presented are electrolytes, i.e. the solutes are ionic compounds.
Then, you have to compare the number of ions that you have in each solution.
A) 1.0 M KCl ---> 1.0 M K+ + 1.0 MCl- = 2 moles of particles / liter
B) 1.0 M CaCl2 --> 1.0M Ca(2+) + 1.0M * 2 Cl (-) = 3 moles of particle / liter
C) 2.0M KCl ---> 2.0 M K+ + 2.0 M Cl- = 4 moles of particle / liter
D) 2.0 M CaCl2 ----> 2.0 M Ca (2+) + 2.0M * 2 Cl (-) = 6 moles of particle / liter.
Then, the solution 2.0M CaCl2(aq) has the highest increase in the boiling point.
Answer: option D) 2.0 M Ca Cl2(aq)
Answer:
The molar mass is determined by applying the Ideal Gas Law, PV = nRT, where P is the pressure (in atm), V is the volume (in L), n is the number of moles of gas, R is the universal gas constant (0.08206 L∙atm/mol∙K), and T is the temperature (in K).
Hope this helps! :)
Probably b because soil can’t be the exact same and so that cancels out a and d
Answer:
D H2PO4– + HPO42–
Explanation:
The acid dissociation constant for
are
respectively.



The reason while option D is the best answer is that, the value of pKa for both
lies on either side of the desired pH of the buffer. This implies that one is slightly over and the other is slightly under.
Using Henderson-Hasselbach equation:
