1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AlexFokin [52]
3 years ago
7

Yall arent correct...

Mathematics
1 answer:
koban [17]3 years ago
5 0

Answer:

Of course they were incorrect

Step-by-step explanation:

Anything to the power of 0 will always be 1, no matter what the number is.

You might be interested in
Prove the following integration formula:
7nadin3 [17]

Answer:

See Explanation.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Distributive Property
  • Equality Properties

<u>Algebra I</u>

  • Combining Like Terms
  • Factoring

<u>Calculus</u>

  • Derivative 1:                  \frac{d}{dx} [e^u]=u'e^u
  • Integration Constant C
  • Integral 1:                      \int {e^x} \, dx = e^x + C
  • Integral 2:                     \int {sin(x)} \, dx = -cos(x) + C
  • Integral 3:                     \int {cos(x)} \, dx = sin(x) + C
  • Integral Rule 1:             \int {cf(x)} \, dx = c \int {f(x)} \, dx
  • Integration by Parts:    \int {u} \, dv = uv - \int {v} \, du
  • [IBP] LIPET: Logs, Inverses, Polynomials, Exponents, Trig

Step-by-step Explanation:

<u>Step 1: Define Integral</u>

\int {e^{au}sin(bu)} \, du

<u>Step 2: Identify Variables Pt. 1</u>

<em>Using LIPET, we determine the variables for IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = sin(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{-cos(bu)}{b}

<u>Step 3: Integrate Pt. 1</u>

  1. Integrate [IBP]:                                           \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} - \int ({ae^{au} \cdot \frac{-cos(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                                \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} \int ({e^{au}cos(bu)}) \, du

<u>Step 4: Identify Variables Pt. 2</u>

<em>Using LIPET, we determine the variables for the 2nd IBP.</em>

<em>Use Int Rules 2 + 3.</em>

u = e^{au}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ dv = cos(bu)du\\du = ae^{au}du \ \ \ \ \ \ \ \ \ v = \frac{sin(bu)}{b}

<u>Step 5: Integrate Pt. 2</u>

  1. Integrate [IBP]:                                                  \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \int ({ae^{au} \cdot \frac{sin(bu)}{b} }) \, du
  2. Integrate [Int Rule 1]:                                    \int {e^{au}cos(bu)} \, du = \frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du

<u>Step 6: Integrate Pt. 3</u>

  1. Integrate [Alg - Back substitute]:     \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{a}{b} [\frac{e^{au}sin(bu)}{b} - \frac{a}{b} \int ({e^{au} sin(bu)}) \, du]
  2. [Integral - Alg] Distribute Brackets:          \int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2} - \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du
  3. [Integral - Alg] Isolate Original Terms:     \int {e^{au}sin(bu)} \, du + \frac{a^2}{b^2} \int ({e^{au} sin(bu)}) \, du= \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  4. [Integral - Alg] Rewrite:                                (\frac{a^2}{b^2} +1)\int {e^{au}sin(bu)} \, du = \frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}
  5. [Integral - Alg] Isolate Original:                                    \int {e^{au}sin(bu)} \, du = \frac{\frac{-e^{au}cos(bu)}{b} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +1}
  6. [Integral - Alg] Rewrite Fraction:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{-be^{au}cos(bu)}{b^2} + \frac{ae^{au}sin(bu)}{b^2}}{\frac{a^2}{b^2} +\frac{b^2}{b^2} }
  7. [Integral - Alg] Combine Like Terms:                          \int {e^{au}sin(bu)} \, du = \frac{\frac{ae^{au}sin(bu)-be^{au}cos(bu)}{b^2} }{\frac{a^2+b^2}{b^2} }
  8. [Integral - Alg] Divide:                                  \int {e^{au}sin(bu)} \, du = \frac{ae^{au}sin(bu) - be^{au}cos(bu)}{b^2} \cdot \frac{b^2}{a^2 + b^2}
  9. [Integral - Alg] Multiply:                               \int {e^{au}sin(bu)} \, du = \frac{1}{a^2+b^2} [ae^{au}sin(bu) - be^{au}cos(bu)]
  10. [Integral - Alg] Factor:                                 \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)]
  11. [Integral] Integration Constant:                     \int {e^{au}sin(bu)} \, du = \frac{e^{au}}{a^2+b^2} [asin(bu) - bcos(bu)] + C

And we have proved the integration formula!

6 0
3 years ago
Read 2 more answers
14) If there are 7 dogs for every 4 cats in an animal
Monica [59]

Answer:

819 of the animals are dogs.

Step-by-step explanation:

☆We can solve using proportion.

\frac{7 \: dogs}{4 \: cats}  =  \frac{x}{468 \: cats}  \\  \\  \frac{4x}{4}  =  \frac{3276}{4}  \\  \\ x = 819

7 0
3 years ago
Zayn puts garland around a square window. He
mojhsa [17]
2 meters because 8/4 is 2
8 0
4 years ago
Please help !!
shutvik [7]

Given:

The limit problem is:

\lim_{x\to 3}(x^2+8x-2)

To find:

The limit of the function by using direct substitution.

Solution:

We have,

\lim_{x\to 3}(x^2+8x-2)

Applying limit, we get

\lim_{x\to 3}(x^2+8x-2)=(3)^2+8(3)-2

\lim_{x\to 3}(x^2+8x-2)=9+24-2

\lim_{x\to 3}(x^2+8x-2)=33-2

\lim_{x\to 3}(x^2+8x-2)=31

Therefore, the correct option is D.

4 0
3 years ago
For sin2x+cosx=0, use a double-angle or half-angle formula to simplify the equation and then find all solutions of the equation
Archy [21]

Answer:

Step-by-step explanation:

Given is a trignometric equation in x, as

sin2x+cosx=0

TO make it in one trig ratio, we can replace sin2x as 2sinx cosx

WE get now

2sinxcosx+cosx=0\\

cosx(2sinx+1)=0\\cosx=0, sinx =-0.5\\

Principal solution is x=\frac{\pi}{2} , \frac{-\pi}{6}

x = ±π/2 + 2kπ, where k is any integer or

x=±pi/6 +k pi, where k is any integer.

General solution is

4 0
3 years ago
Other questions:
  • What number is 4 times as many as 25
    12·1 answer
  • Complete the solution of the equation. Find the<br>value of y when x equals -5.<br>-3x – 3y = -6​
    6·1 answer
  • Find the sum: (3x^2 + 5x − 8) + (5x^2 − 13x − 5)
    7·2 answers
  • 3 (x-3)=6 solve for x
    11·1 answer
  • ?????????HELP PLEASE?????
    6·1 answer
  • The scale of a map is given as 1 : 20000000. Two cities are 6 cm apart on the map. Find the actual distance between them.
    9·1 answer
  • Given the frequency table what percentage of the students in grade 11-12 like rock music round to the nearest whole percent
    5·2 answers
  • Drag each tile to the correct box.
    10·1 answer
  • Write an equation is slope-intercept form for the line parallel to y=7x+9 that passes through (4,10)
    15·1 answer
  • Please Help me solve this problem
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!