1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Step2247 [10]
3 years ago
12

Let A be a given matrix below. First, find the eigenvalues and their corresponding eigenspaces for the following matrices. Then,

find an invertible matrix P and a diagonal matrix such that A = PDPâ’1.
(a) [ 3 2 2 3 ]
(b) [ 1 â 1 2 â 1 ]
(c) [1 2 3 0 2 3 0 0 3]
(d) [3 1 1 1 3 1 1 1 3]
Mathematics
1 answer:
Rama09 [41]3 years ago
3 0

It looks like given matrices are supposed to be

\begin{array}{ccccccc}\begin{bmatrix}3&2\\2&3\end{bmatrix} & & \begin{bmatrix}1&-1\\2&-1\end{bmatrix} & & \begin{bmatrix}1&2&3\\0&2&3\\0&0&3\end{bmatrix} & & \begin{bmatrix}3&1&1\\1&3&1\\1&1&3\end{bmatrix}\end{array}

You can find the eigenvalues of matrix A by solving for λ in the equation det(A - λI) = 0, where I is the identity matrix. We also have the following facts about eigenvalues:

• tr(A) = trace of A = sum of diagonal entries = sum of eigenvalues

• det(A) = determinant of A = product of eigenvalues

(a) The eigenvalues are λ₁ = 1 and λ₂ = 5, since

\mathrm{tr}\begin{bmatrix}3&2\\2&3\end{bmatrix} = 3 + 3 = 6

\det\begin{bmatrix}3&2\\2&3\end{bmatrix} = 3^2-2^2 = 5

and

λ₁ + λ₂ = 6   ⇒   λ₁ λ₂ = λ₁ (6 - λ₁) = 5

⇒   6 λ₁ - λ₁² = 5

⇒   λ₁² - 6 λ₁ + 5 = 0

⇒   (λ₁ - 5) (λ₁ - 1) = 0

⇒   λ₁ = 5 or λ₁ = 1

To find the corresponding eigenvectors, we solve for the vector v in Av = λv, or equivalently (A - λI) v = 0.

• For λ = 1, we have

\begin{bmatrix}3-1&2\\2&3-1\end{bmatrix}v = \begin{bmatrix}2&2\\2&2\end{bmatrix}v = 0

With v = (v₁, v₂)ᵀ, this equation tells us that

2 v₁ + 2 v₂ = 0

so that if we choose v₁ = -1, then v₂ = 1. So Av = v for the eigenvector v = (-1, 1)ᵀ.

• For λ = 5, we would end up with

\begin{bmatrix}-2&2\\2&-2\end{bmatrix}v = 0

and this tells us

-2 v₁ + 2 v₂ = 0

and it follows that v = (1, 1)ᵀ.

Then the decomposition of A into PDP⁻¹ is obtained with

P = \begin{bmatrix}-1 & 1 \\ 1 & 1\end{bmatrix}

D = \begin{bmatrix}1 & 0 \\ 0 & 5\end{bmatrix}

where the n-th column of P is the eigenvector associated with the eigenvalue in the n-th row/column of D.

(b) Consult part (a) for specific details. You would find that the eigenvalues are i and -i, as in i = √(-1). The corresponding eigenvectors are (1 + i, 2)ᵀ and (1 - i, 2)ᵀ, so that A = PDP⁻¹ if

P = \begin{bmatrix}1+i & 1-i\\2&2\end{bmatrix}

D = \begin{bmatrix}i&0\\0&i\end{bmatrix}

(c) For a 3×3 matrix, I'm not aware of any shortcuts like above, so we proceed as usual:

\det(A-\lambda I) = \det\begin{bmatrix}1-\lambda & 2 & 3 \\ 0 & 2-\lambda & 3 \\ 0 & 0 & 3-\lambda\end{bmatrix} = 0

Since A - λI is upper-triangular, the determinant is exactly the product the entries on the diagonal:

det(A - λI) = (1 - λ) (2 - λ) (3 - λ) = 0

and it follows that the eigenvalues are λ₁ = 1, λ₂ = 2, and λ₃ = 3. Now solve for v = (v₁, v₂, v₃)ᵀ such that (A - λI) v = 0.

• For λ = 1,

\begin{bmatrix}0&2&3\\0&1&3\\0&0&2\end{bmatrix}v = 0

tells us we can freely choose v₁ = 1, while the other components must be v₂ = v₃ = 0. Then v = (1, 0, 0)ᵀ.

• For λ = 2,

\begin{bmatrix}-1&2&3\\0&0&3\\0&0&1\end{bmatrix}v = 0

tells us we need to fix v₃ = 0. Then -v₁ + 2 v₂ = 0, so we can choose, say, v₂ = 1 and v₁ = 2. Then v = (2, 1, 0)ᵀ.

• For λ = 3,

\begin{bmatrix}-2&2&3\\0&-1&3\\0&0&0\end{bmatrix}v = 0

tells us if we choose v₃ = 1, then it follows that v₂ = 3 and v₁ = 9/2. To make things neater, let's scale these components by a factor of 2, so that v = (9, 6, 2)ᵀ.

Then we have A = PDP⁻¹ for

P = \begin{bmatrix}1&2&9\\0&1&6\\0&0&2\end{bmatrix}

D = \begin{bmatrix}1&0&0\\0&2&0\\0&0&3\end{bmatrix}

(d) Consult part (c) for all the details. Or, we can observe that λ₁ = 2 is an eigenvalue, since subtracting 2I from A gives a matrix of only 1s and det(A - 2I) = 0. Then using the eigen-facts,

• tr(A) = 3 + 3 + 3 = 9 = 2 + λ₂ + λ₃   ⇒   λ₂ + λ₃ = 7

• det(A) = 20 = 2 λ₂ λ₃   ⇒   λ₂ λ₃ = 10

and we find λ₂ = 2 and λ₃ = 5.

I'll omit the details for finding the eigenvector associated with λ = 5; I ended up with v = (1, 1, 1)ᵀ.

• For λ = 2,

\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}v = 0

tells us that if we fix v₃ = 0, then v₁ + v₂ = 0, so that we can pick v₁ = 1 and v₂ = -1. So v = (1, -1, 0)ᵀ.

• For the repeated eigenvalue λ = 2, we find the generalized eigenvector such that (A - 2I)² v = 0.

\begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix}^2 v = \begin{bmatrix}3&3&3\\3&3&3\\3&3&3\end{bmatrix}v = 0

This time we fix v₂ = 0, so that 3 v₁ + 3 v₃ = 0, and we can pick v₁ = 1 and v₃ = -1. So v = (1, 0, -1)ᵀ.

Then A = PDP⁻¹ if

P = \begin{bmatrix}1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{bmatrix}

D = \begin{bmatrix}5&0&0\\0&2&0\\0&2&2\end{bmatrix}

You might be interested in
Carolina biked 1 mile more than twice the number of miles James biked. Carolina biked a total of 5 miles. Write an equation to d
antoniya [11.8K]

Answer:

5 = 2x + 1

Step-by-step explanation:

let James be x , then 1 mile more than twice number of mile of James will be 2x + 1 therefore the total number of miles biked by carolina will be 2x + 1 = 5

4 0
3 years ago
Read 2 more answers
The ordered pair D (-4,-2) has been plotted for you. If you reflected coordinate d over the x-axis, which point from part A woul
Serjik [45]
A= (-4,2)

The x value (-4) stays the same when reflected over the x-axis, so only the y-value gets reflected and therefore changed.
The resultant coordinate is (-4,2)
6 0
4 years ago
Mrs. Dominguez asked her students to plot the number of books they read over the summer
Assoli18 [71]

Answer: Count the dots located on the blot labeled at 2.

There are 6 dots, which mean 6 students read 2 books.

The answer is 6.

Step-by-step explanation:

7 0
3 years ago
I don’t know # 6 and #8 plz help
aalyn [17]
#6. the answer is 12 it increases by 4 every time

#8. the answer is every week he runs his miles increase by 5
3 0
3 years ago
At a neighborhood park, there are 11 spaces for bicycles on a rack by the basketball court. The bicycle rack by the playground h
Sati [7]

Answer:

Since they are 11 spaces for bicylces and the playground has as many spaces for bicycles then we use this equation 3 x 11 = 33  to find the total number of bicycles spaces on the rack by the playground.

8 0
4 years ago
Other questions:
  • The slope of the line below is 0.5. Write the equation of the line in point-slope form, using the coordinates of the labeled poi
    6·1 answer
  • Solve the system of equations using the substitution method.
    8·2 answers
  • Simplify the quotient <img src="https://tex.z-dn.net/?f=%5Csqrt%7B%5Cfrac%7B5%7D%7B2%5Csqrt%7B7%7D%20%7D%20%7D" id="TexFormula1"
    15·2 answers
  • PLEASE HELP ITS AN EMERGENCY
    12·1 answer
  • (5+5i)(5-5i)=what????
    12·2 answers
  • The outstanding balance on a particular charge card is totaled $156 billion in 1966 and $390 billion in 2002. Estimate the debt
    14·1 answer
  • SLOPE AGAIN HEE HEE PLEASE HELP ME! + 50 WHOLE POINTS
    14·1 answer
  • Una was asked to write about predicting population means by taking the means of samples. She recorded a list of some statements
    9·2 answers
  • Find the c.o.p <br> (4,9)<br> (4,12)<br> (5,21)
    5·1 answer
  • Select all possible equivalent expressions below
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!