Answer: rational
Step-by-step explanation: 7 has an answer example 7+1 is 8 irrational are the ones that dont get an answer like root numbers
no because you're more than likely going to lose your money
Answer:
N(t) = 0.188t + 22.76
Step-by-step explanation:
Number of licensed drivers in 2004 = 22.76 million
Number of licensed drivers in 2009 = 23.7 million
Number of licensed drivers, N as a function of t since year 2004 ;
General form of a linear function :
y = mx + c
c = intercept ; m = slope
Intercept c = value of y ; when x = 0
Here, population after uerssmmx,
Hence,
In 2004 ;
22.76 = mx + c
x = 0
22.76 = c
Number in 2009
x = number of yesrs after 2004 ; x = 2000 - 2004 = 5years
We can find the slope :
y = m*5 + 22.76
y = 23.7 in 2009
23.7 = 5m + 22.76
23.7 - 22.76 = 5m
m = 0.94 / 5
m = 0.188
Hence, the linear function can be written as :
N(t) = 0.188t + 22.76
Answer:
a:c = 35:24
a:c = 20:27
a:c = 35:22
a:c = 28:27
Step-by-step explanation:
a:b = 7:3
Using cross products
3a = 7b
Divide by 7
3a/7 = b
Now we want
8b = 5c
Substitute in 3a/7 for b
8 (3a/7) = 5c
24/7a = 5c
Multiply by 7
24/7a *7 = 5*7c
24a = 35c
Divide by c
24 a/c = 35
Divide by 24
a/c = 35/24
a:c = 35:24
a:b = 4:9
Using cross products
9a = 4b
Divide by 4
9a/4 = b
Now we want
3b = 5c
Substitute in 9a/4 for b
3 (9a/4) = 5c
27/4a = 5c
Multiply by 4
27/4a *4 = 5*4c
27a = 20c
Divide by c
27 a/c = 20
Divide by 27
a/c = 20/27
a:c = 20:27
b:c = 5:11
Using cross products
11b = 5c
Divide by 11
b = 5c/11
Now we want
2a = 7b
Substitute in 5c/11 for b
2a = 7(5c/11)
2a = 35c/11
Multiply by 11
2a*11 = 35c
22a = 35c
Divide by c
22 a/c = 35
Divide by 22
a/c = 35/22
a:c = 35:22
b:c = 14:3
Using cross products
3b = 14c
Divide by 3
b = 14c/3
Now we want
9a = 2b
Substitute in 14c/3 for b
9a = 2(14c/3)
9a = 28c/3
Multiply by 3
9a*3 = 28c
27a = 28c
Divide by c
27 a/c = 28
Divide by 27
a/c = 28/27
a:c = 28:27
we know that
in the right triangle ABC
the value of cosine of angle x is equal to

we have

substitute the values

Find the measure of angle x

Round to the nearest whole degree

therefore
<u>the answer is</u>
