The second answer is not a characteristic because compounds don’t vary from sample to sample. For example NaCl (table salt) is indistinguishable from sample to sample.
Answer:

Explanation:
Hello,
In this case, given the acid, we can suppose a simple dissociation as:

Which occurs in aqueous phase, therefore, the law of mass action is written by:
![Ka=\frac{[H^+][A^-]}{[HA]}](https://tex.z-dn.net/?f=Ka%3D%5Cfrac%7B%5BH%5E%2B%5D%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
That in terms of the change
due to the reaction's extent we can write:

But we prefer to compute the Kb due to its exceptional weakness:

Next, the acid dissociation in the presence of the base we have:
![Kb=\frac{[OH^-][HA]}{[A^-]}=1x10^{6}=\frac{x*x}{0.1-x}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BOH%5E-%5D%5BHA%5D%7D%7B%5BA%5E-%5D%7D%3D1x10%5E%7B6%7D%3D%5Cfrac%7Bx%2Ax%7D%7B0.1-x%7D)
Whose solution is
which equals the concentration of hydroxyl in the solution, thus we compute the pOH:
![pOH=-log([OH^-])=-log(0.0999)=1](https://tex.z-dn.net/?f=pOH%3D-log%28%5BOH%5E-%5D%29%3D-log%280.0999%29%3D1)
Finally, since the maximum scale is 14, we can compute the pH by knowing the pOH:

Regards.
Answer:
The average atomic mass is closer to Si- 28 because this isotope is present in more percentage in the sample.
Explanation:
Given data:
Atomic mass of silicon= ?
Percent abundance of Si-28 = 92.21%
Atomic mass of Si-28 = 27.98 amu
Percent abundance of Si-29 = 4.70%
Atomic mass of Si-29 = 28.98 amu
Percent abundance of Si-30 = 3.09%
Atomic mass of Si-30 = 29.97 amu
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass)+(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (92.21×27.98)+(4.70×28.98)+(3.09×29.97) /100
Average atomic mass = 2580.04 +136.21+92.61 / 100
Average atomic mass = 2808.86 / 100
Average atomic mass = 28.08amu.
The average atomic mass is closer to Si- 28 because this isotope is present in more percentage in the sample.
Answer:
a element
Explanation:
In science copper is a element. It is one of the transition metals found on the periodic table of elements.
Elements are distinct substances that cannot be split-up into simpler substances. Such substances consist of one kind of atom.
There are over a hundred elements that are known till date.
Each elements combines to form a compound