Answer : The incorrect option is, (d) The reactant that was the smallest given mass is the limiting reagent.
Explanation :
Limiting reagent : It is the reagent that is completely consumed in the chemical reaction when the chemical reaction is complete. No amount is left after the reaction is complete. The amount of product obtained is determined by the limiting reagent. A balanced equation is necessary to determine which reactant is limiting reagent.
Excess reagent : It is the reagent that are not completely consumed in the chemical reaction. That means the reagent is in excess amount. Some amount of the excess reagent is left over after the reaction is complete.
From this we conclude that the options, A, B and C are correct. While the option D is incorrect.
Option D is incorrect because it is not necessary the reactant that was the smallest given mass is the limiting reagent but it is judge by the number of moles present in the reaction.
Hence, the incorrect option is, (d)
The best answer would be because there might be an accident.
A complex substance forms when a chemical change takes place
Hello,
Question- Igneous rock can _____ to form metamorphic rock.
A. melt
B. harden
C. heat up
D. weather
Answer- Your answer is C. Heat up
Why- Any rock can become any rock igneous metamorphic or even condemnatory just by heating up but when it melts it becomes lava and the rock cycle starts all over again.
Important- If my answer was enough to help uou please mark me as Brainliest, Leave a thanks, and Rate my answer 5 stars thank you and have the best day ever!
Answer: Equilibrium constant is 0.70.
Explanation:
Initial moles of
= 0.35 mole
Volume of container = 1 L
Initial concentration of
Initial moles of
= 0.40 mole
Volume of container = 1 L
Initial concentration of
equilibrium concentration of
[/tex]
The given balanced equilibrium reaction is,

Initial conc. 0.35 M 0.40M 0 0
At eqm. conc. (0.35-x) M (0.40-x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[CO_2]\times [H_2O]}{[CO]\times [H_2O]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO_2%5D%5Ctimes%20%5BH_2O%5D%7D%7B%5BCO%5D%5Ctimes%20%5BH_2O%5D%7D)

we are given : (0.35-x)= 0.18
x = 0.17
Now put all the given values in this expression, we get :


Thus the value of the equilibrium constant is 0.70.