Answer:
See Explanation
Explanation:
The Law of Conservation of Matter as applied to chemical reactions says that matter is neither created nor distroyed, only changed in form. This implies that the mass of substances going into a reaction process must equal the mass of products generated during the reaction process.
Empirically,
∑ mass reactants = ∑ mass products
One can test this idea after balancing a chemical equation by determining the sum of formula weights of reactants and products; then compare. If reaction was properly balanced, the total mass reactants = total mass of products.
Example:
Combustion of Methane => CH₄(g) + 2O₂(g) => CO₂(g) + 2H₂O(l)
Equation Weights => 16amu + 64amu <=> 44amu + 36amu
Mass Reactants = Mass Products => 80amu <=> 80amu.
__________________
*amu = atomic mass units => sum of atomic weights of elements
Answer:
Energy is the ability to do work or to produce heat.
Answer:
The molar mass in g/mol is 121.4 g/m
Explanation:
Let's apply the Ideal Gases Law to solve this:
P . V = n . R. T
V = 125 mL → 0.125L
P = 754 Torr
760 Torr ___ 1 atm
754 Torr ____ (754 / 760) = 0.992 atm
Moles = Mass / Molar mass
0.992 atm . 0.125L = (0.495 g / MM) . 0.082 . 371K
(0.992 atm . 0.125L) / (0.082 . 371K) = (0.495 g / MM)
4.07x10⁻³ mol = 0.495 g / MM
MM = 0.495 g / 4.07x10⁻³ mol → 121.4 g/m
A catalyst
A catalyst can be in many forms
Anything that has mass and volume (takes up space) is called matter.