The ball's gravitational potential energy is converted into kinetic energy as it falls toward the ground.
<h3>How can the height of a dropped ball be determined?</h3>
Y = 1/2 g t 2, where y is the height above the ground, g = 9.8 m/s2, and t = 1.3 s, is the formula for problems like these. Any freely falling body with an initial velocity of zero meters per second can use this formula. figuring out how much y is.
A ball drops from the top of a building and picks up speed as it descends. Its speed is increasing by 10 m/s every second. What we refer to as motion with constant acceleration is, for example, a ball falling due to gravity.
The ball's parabolic motion causes it to move at a speed of 26.3 m/s right before it strikes the ground, which is faster than its straight downhill motion, which has a speed of 17.1 m/s. Take note of the rising positive y direction in the above graphic.
To Learn more About potential energy, Refer:
brainly.com/question/14427111
#SPJ10
When 'The big bang' happened lots of large pieces of molten rock was flying around the solar system. As the rocks crashed together they got bigger and as the got bigger they attracted more rocks. Some scientists think that a large piece of molten rock hit the still developing Earth and created the Moon. This impact also caused the Earths angled spin. The Moon got trapped in Earth's orbit and has stayed ever since. Small astroids have hit the Moon causing craters. The Earth doesn't get hit as much because of our thicker atmosphere. Hope this helps!
Answer:
0.01 H
Explanation:
V = 12 cos (1000t + 45)
C = 100 micro farad
Let the inductance be L .
When the current and the voltage are in the same phase so it is the condition of resonance.
So capacitive reactance = inductive reactance
Xc = XL
1/ωC = ωL
L = 1 / ω²C
By comparisonV = Vo Cos (ωt + Ф)
ω = 1000 rad/s
L = 1 / (1000 x 1000 x 100 x 10^-6)
L = 1 / 100
L = 0.01H
thus, the inductance of the inductor is 0.01 H.
The distance the object travels