1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
juin [17]
2 years ago
13

2. Identify and explain two factors that can influence your skill-related fitness levels.

Physics
1 answer:
zalisa [80]2 years ago
7 0
Genetics and experience (maybe) because sometimes genetics can give u an advantage in activness
You might be interested in
An accelerating voltage of 2.47 x 10^3 V is applied to an electron gun, producing a beam of electrons originally traveling horiz
Dmitry [639]

Answer:

6.3445×10⁻¹⁶ m

Explanation:

E = Accelerating voltage = 2.47×10³ V

m = Mass of electron

Distance electron travels = 33.5 cm = 0.335 cm

E=\frac{mv^2}{2}\\\Rightarrow v=\sqrt{\frac{2E}{m}}\\\Rightarrow v=\sqrt{\frac{2\times 2470\times 1.6\times 10^{-19}}{9.11\times 10^{-31}}}\\\Rightarrow v=29455356.08671\ m/s

Deflection by Earth's Gravity

\Delta =\frac {gt^2}{2}

Now, Time = Distance/Velocity

\Delta =\frac {g\frac{s^2}{v^2}}{2}\\\Rightarrow \Delta =\frac{9.81\frac{0.335^2}{29455356.08671^2}}{2}\\\Rightarrow \Delta =6.3445\times 10^{-16}\ m

∴ Magnitude of the deflection on the screen caused by the Earth's gravitational field is 6.3445×10⁻¹⁶ m

3 0
3 years ago
This is a measure of the quantity of matter.
emmainna [20.7K]

The measure of the quantity of matter would be mass. Mass is measured in kilograms. I hope this helped!:)

3 0
3 years ago
Read 2 more answers
A spring stretches by 0.0208 m when a 3.39-kg object is suspended from its end. How much mass should be attached to this spring
sashaice [31]

Answer:

COMPLETE QUESTION

A spring stretches by 0.018 m when a 2.8-kg object is suspended from its end. How much mass should be attached to this spring so that its frequency of vibration is f = 3.0 Hz?

Explanation:

Given that,

Extension of spring

x = 0.0208m

Mass attached m = 3.39kg

Additional mass to have a frequency f

Let the additional mass be m

Using Hooke's law

F= kx

Where F = W = mg = 3.39 ×9.81

F = 33.26N

Then,

F = kx

k = F/x

k = 33.26/0.0208

k = 1598.84 N/m

The frequency is given as

f = ½π√k/m

Make m subject of formula

f² = ¼π² •(k/m

4π²f² = k/m

Then, m4π²f² = k

So, m = k/(4π²f²)

So, this is the general formula,

Then let use the frequency above

f = 3Hz

m = 1598.84/(4×π²×3²)

m = 4.5 kg

4 0
3 years ago
A running mountain lion can make a leap 10.0 m long, reaching a maximum height of 3.0 m.?a.What is the speed of the mountain lio
Arisa [49]

Answer:

What is the speed of the mountain lion as it leaves the ground?

9.98m/s

At what angle does it leave the ground?

50.16°

Explanation:

This is going to be long, so if you want to see how it was solved refer to the attached solution. If you want to know the step by step process, read on.

To solve this, you will need use two kinematic equations and SOHCAHTOA:

d = v_it + \dfrac{1}{2}at^{2}\\\\vf = vi + at

With these formulas, we can derive formulas for everything you need:

Things you need to remember:

  • A projectile at an angle has a x-component (horizontal movement) and y-component (vertical movement), which is the reason why it creates an angle.
  • Treat them separately.
  • At maximum height, the vertical final velocity is always 0 m/s going up. And initial vertical velocity is 0 m/s going down.
  • Horizontal movement is not influenced by gravity.
  • acceleration due to gravity (a) on Earth is constant at 9.8m/s

First we need to take your given:

10.0 m long (horizontal) and maximum height of 3.0m (vertical).

d_x=10.0m\\d_y=3.0m

What your problem is looking for is the initial velocity and the angle it left the ground.

Vi = ?     Θ =?

Vi here is the diagonal movement and do solve this, we need both the horizontal velocity and the vertical velocity.

Let's deal with the vertical components first:

We can use the second kinematic equation given to solve for the vertical initial velocity but we are missing time. So we use the first kinematic equation to derive a formula for time.

d_y=V_i_yt+\dfrac{1}{2}at^{2}

Since it is at maximum height at this point, we can assume that the lion is already making its way down so the initial vertical velocity would be 0 m/s. So we can reduce the formula:

d_y=0+\dfrac{1}{2}at^{2}

d_y=\dfrac{1}{2}at^{2}

From here we can derive the formula of time:

t=\sqrt{\dfrac{2d_y}{a}}

Now we just plug in what we know:

t=\sqrt{\dfrac{(2)(3.0m}{9.8m/s^2}}\\t=0.782s

Now that we know the time it takes to get from the highest point to the ground. The time going up is equal to the time going down, so we can use this time to solve for the intial scenario of going up.

vf_y=vi_y+at

Remember that going up the vertical final velocity is 0m/s, and remember that gravity is always moving downwards so it is negative.

0m/s=vi_y+-9.8m/s^{2}(0.782s)\\-vi_y=-9.8m/s^{2}(0.782s)\\-vi_y=-7.66m/s\\vi_y=7.66m/s

So we have our first initial vertical velocity:

Viy = 7.66m/s

Next we solve for the horizontal velocity. We use the same kinematic formula but replace it with x components. Remember that gravity has no influence horizontally so a = 0:

d_x=V_i_xt+\dfrac{1}{2}0m/s^{2}(t^{2})\\d_x=V_i_xt

But horizontally, it considers the time of flight, from the time it was released and the time it hits the ground. Also, like mentioned earlier the time going up is the same as going down, so if we combine them the total time in flight will be twice the time.

T= 2t

T = 2 (0.782s)

<em>T = 1.564s</em>

<em>So we use this in our formula:</em>

<em>d_x=V_i_xT\\\\10.0m=Vi_x(1.564s)\\\\\dfrac{10.0m}{1.564s}=V_i_x\\\\6.39m/s=V_i_x</em>

Vix=6.39m/s

Now we have the horizontal and the vertical component, we can solve for the diagonal initial velocity, or the velocity the mountain lion leapt and the angle, by creating a right triangles, using vectors (see attached)

To get the diagonal, you just use the Pythagorean theorem:

c²=a²+b²

Using it in the context of our problem:

Vi^{2}=Viy^2+Vix^2\\Vi^2=(7.66m/s)^2+(6.39m/s)^2\\\sqrt{Vi}=\sqrt{(7.66m/s)^2+(6.39m/s)^2}\\\\Vi=9.98m/s

The lion leapt at 9.98m/s

Using SOHCAHTOA, we know that we can TOA to solve for the angle, because we have the opposite and adjacent side:

Tan\theta=\dfrac{O}{A}\\\\Tan\theta=\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{7.66m/s}{6.39m/s}\\\\\theta=50.17

The lion leapt at an angle of 50.16°.

6 0
3 years ago
The potential energy of a 35 kg cannon ball is 14000 J. How high was the cannon ball to have this much potential energy?
Anettt [7]

From the information given, cannon ball weighs 40 kg and has a potential energy of 14000 J.

We need to find its height.

We will use the formula P.E = mgh

Therefore h = P.E / mg

where P.E is the potential energy,

m is mass in kg,  

g is acceleration due to gravity (9.8 m/s²)

h is the height of the object's displacement in meters.

h = P.E. / mg

h = 14000 / 40 × 9.8

h = 14000 / 392

h = 35.7

Therefore the canon ball was 35.7 meters  high.

6 0
3 years ago
Other questions:
  • A 6.0-kg box slides down an inclined plane that slopes 39° to the horizontal. The box accelerates at a rate of 3.1 m/s^2. What i
    15·1 answer
  • When walking barefoot, Kevin can walk across the grass easily, but when he crosses the paved street, the street is hot and burns
    7·1 answer
  • A tank of water is separated into two sections. Hot green water is placed on one side of the tank and clear cold water is placed
    13·2 answers
  • Maria and Miquel were enjoying the fireworks when they got into a chemistry argument. Maria insisted that the fireworks were the
    11·2 answers
  • IN a physics lab, a student discovers that the magnitude of the magnetic field at a certain distance from a long wire is 4.0μT.
    10·1 answer
  • A 35.0-cm-diameter circular loop is rotated in a uniform electric field until the position of maximum electric flux is found. Th
    5·1 answer
  • Why is the nitrogen cycle considered a closed system?
    12·2 answers
  • what happens when light travels from one medium to another with a different index of refraction at a zero degree angle of incide
    9·2 answers
  • Why is gum bad for you
    12·2 answers
  • Which of the following are car safety features that rely on increasing the
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!