The density of the nickel was greater than that of the quarter and penny, thus, the results supports the hypothesis.
<h3>What is density of substance?</h3>
The density of a substance is a measure of how tightly-packed the particles of the substance are.
Density is calculated as the ratio of the mass of the substance and the volume of the substance.
The hypothesis of the lab to compare the densities of a penny, a nickel, and a quarter is:
- If the nickel has a greater density than the quarter and penny, then it will have a greater mass to volume ratio. If the nickel has a lower density than the quarter and penny, then it will have a lower mass-to-volume ratio.
The average mass and the average volume of a penny, a nickel, and a quarter are then used to determine the density of each coin.
Based on obtained results, it would be found that the density of the nickel was greater than that of the quarter and penny. Therefore, the results supports the hypothesis.
In conclusion, the density of a substance depends on the mass and the volume.
Learn more about density at: brainly.com/question/1354972
#SPJ1
Answer:
T = 188.5 s, correct is C
Explanation:
This problem must be worked on using conservation of angular momentum. We define the system as formed by the fan and the paper, as the system is isolated, the moment is conserved
initial instant. Before the crash
L₀ = r m v₀ + I₀ w₀
the angular speed of the fan is zero w₀ = 0
final instant. After the crash
L_f = I₀ w + m r v
L₀ = L_f
m r v₀ = I₀ w + m r v
angular and linear velocity are related
v = r w
w = v / r
m r v₀ = I₀ v / r + m r v
m r v₀ = (I₀ / r + mr) v
v = 
let's calculate
v = 
v = 
v = 0.02 m / s
To calculate the time of a complete revolution we can use the kinematics relations of uniform motion
v = x / T
T = x / v
the distance of a circle with radius r = 0.6 m
x = 2π r
we substitute
T = 2π r / v
let's calculate
T = 2π 0.6/0.02
T = 188.5 s
reduce
t = 188.5 s ( 1 min/60 s) = 3.13 min
correct is C
Explanation:
Initial energy = final energy + work done by friction
PE = PE + KE + W
mgH = mgh + 1/2 mv² + W
(800)(9.8)(30) = (800)(9.8)(2) + 1/2 (800) v² + 25000
v = 22.1 m/s
Without friction:
PE = PE + KE
mgH = mgh + 1/2 mv²
(800)(9.8)(30) = (800)(9.8)(2) + 1/2 (800) v²
v = 23.4 m/s
Answer:

Explanation:
Given data:
PERIOD OF MOTION IS T = 25.5 days
orbital speeds = 220 km/s
we know that
acceleration due to centripetal force is
Gravitational force
we know that

solving for





we know that
f =ma

solving for m



Answer:
bass limestone
Explanation:
if I'm right bass limestone is the fourth one because 3 are under it