Any second part or anything else to look at?
Answer:
Any one of these three works:
plane MOU
plane MNU
plane NOU
Step-by-step explanation:
A plane can be named by a single letter, such as L in this problem, or by any three non-collinear points that lie on the plane. Non-collinear points are points that do not all lie in a single line.
Points M, N, O, and U lie on plane L, so you can choose any 3 of the 4 points to name the plane with, but make sure all 3 points are non-collinear.
To name plane L with points, you cannot use points MNO together since they are collinear, but you can name it using point U plus any two of the points M, N, and O.
plane L can be named
plane MOU
plane MNU
plane NOU
Do not name it plane MNO
Classic Algebra and its unnecessarily complicated sentence structure. As you may have probably known, Algebra has its own "vocabulary set".
"the length of a rectangle exceeds its width by 6 inches" -> length is 6 in. longer than width -> l= w + 6
Since we're solving for the length and width, let's give them each variables.
length = l = w+6
width = w
The next bit of information is "the area is 40 square inches"
Applying the formula for the area of a rectangle we can set up:
l x w = 40
replace "l", or length, with it's alternate value.
(w+6) x w = 40
distribute
+ 6w = 40
subtract 40 from both sides
+ 6w - 40 = 0
factor
(w - 4)(w + 10) = 0
solve for w
w= 4, or -10
So great, we have 2 values; which one do we choose? Since this problem is referring to lengths and inches, we will have to choose the positive value. There is not such thing as a negative distance in the real world.
We now have half of the problem solved: width. Now we just need to find the length which we can do but substituting it back into the original alternate value of l.
l = w + 6
w=4
l = 4 + 6 = 10
The length is 10 in. and the width is 4 in. Hope this helps!
Answer:
80
Step-by-step explanation:
2:3
2+3=5
2/5×200=80