During this time, the total mechanical energy of the object remains constant.
Answer: Option C
<u>Explanation:</u>
The sum total of potential energy and the kinetic energy presented in the system is called mechanical energy. The total mechanical energy in the system, which represents the combined potential and kinetic energies, remains constant as long as the only force work at conservative forces, and mechanical energy is maintained on this principle.
For example, a gravity box in which we throw the ball straights up, and then leave the hand with a specific amounts of kinetic energy. In the first half of the track, there is no kinetic energy, but it has potential energy similar to kinetic energy that it had when that left our hand. When we catch that again, it has the same kinetic energy as when that left our hand. That is why gravity belongs to the category of conservative forces.
Answer:
Sum of the forces will be equal to 3.479 N
Explanation:
We have given two same forces are oriented at an angle of 38°
Magnitude of each force is given 
We have to find the sum of the forces
Sum of the forces will be equal to

So sum of the forces will be equal to 
So sum of the force will be equal to 3.479 N
The time lapse between when the bat emits the sound and when it hears the echo is 0.05 s.
From the question given above, the following data were obtained:
Velocity of sound (v) = 343 m/s
Distance (x) = 8.42 m
Time (t) =?
We can obtain obtained the time as illustrated below:
v = 2x / t
343 = 2 × 8.42 / t
343 = 16.84 / t
Cross multiply
343 × t = 16.84
Divide both side by 343
t = 16.84/343
t = 0.05 s
Thus, the time between when the bat emits the sound and when it hears the echo is 0.05 s.
<h3>
How does a bat know how far away something is?</h3>
A bat emits a sound wave and carefully listens to the echoes that return to it. The returning information is processed by the bat's brain in the same way that we processed our shouting sound with a stopwatch and calculator. The bat's brain determines the distance of an object by measuring how long it takes for a noise to return.
Learn more about time elapses between when the bat emits the sound :
<u>brainly.com/question/16931690</u>
#SPJ4
Correction question:
A bat emits a sonar sound wave (343 m/s) that bounces off a mosquito 8.42 m away. How much time elapses between when the bat emits the sound and when it hears the echo? (Unit = s)
Answer:
a) θ₁ = 23.14 °
, b) θ₂ = 51.81 °
Explanation:
An address network is described by the expression
d sin θ = m λ
Where is the distance between lines, λ is the wavelength and m is the order of the spectrum
The distance between one lines, we can find used a rule of proportions
d = 1/600
d = 1.67 10⁻³ mm
d = 1-67 10⁻³ m
Let's calculate the angle
sin θ = m λ / d
θ = sin⁻¹ (m λ / d)
First order
θ₁ = sin⁻¹ (1 6.5628 10⁻⁷ / 1.67 10⁻⁶)
θ₁ = sin⁻¹ (3.93 10⁻¹)
θ₁ = 23.14 °
Second order
θ₂ = sin⁻¹ (2 6.5628 10⁻⁷ / 1.67 10⁻⁶)
θ₂ = sin⁻¹ (0.786)
θ₂ = 51.81 °
Answer:
28,800m/p second
Explanation:
Calculate the distance per second so, 400m/50 s= 8m/p second now knowing the speed/hour and knowing an hour has 3,600 seconds,multiply it by 8 then you will get 28,800m/p second, or 28.8km/h