Answer: 117.60N
Explanation:
Weight is a force. Therefore, we can use the force formula to find weight.

W = weight
m = mass
g = acceleration due to gravity (
)

Answer:
Explanation:
According to Newton's law of Gravitation, the force
exerted between two bodies of masses
and
and separated by a distance
is equal to the product of their masses and inversely proportional to the square of the distance:
(1)
Where:
is the Gravitational Constant and its value is
is the mass of the Sun
is the mass of the Earth
is the distance between the Sun and the Earth
Substituting the values in (1):
(2)
Finally:
This is the gravitational force acting on the earth due to the sun
Answer:
<h3>
2.3125m/s²</h3>
Explanation:
Using the equation of motion v² = u²+2aS
v is the final velocity = 120km/hr
120km/hr = 120 * 1000/1 * 3600 = 33.3m/s
u is the initial velocity = 0m/s
a is the acceleration
S is the distance covered = 240m
On substituting the given parameters
33.3² = 0²+2a(240)
33.3² = 480a
1110 = 480a
a = 1110/480
a = 2.3125m/s²
Hence the minimum constant acceleration that the aircraft require to be airborne after a takeoff run of 240 m is 2.3125m/s²
Answer:
(a) Potential energy of the child is converted into the kinetic energy at the bottom off the slide and a part of which is lost into friction generating heat between the contact surfaces.
(b) 
Explanation:
Given:
- mass of the child,

- height of the slide,

- initial velocity of the child at the slide,

- final velocity of the child at the bottom of slide,

(a)
∴The initial potential energy of the child is converted into the kinetic energy at the bottom off the slide and a part of which is lost into friction generating heat between the contact surfaces.
Initial potential energy:



Kinetic energy at the bottom of the slide:



(b)
Now, the difference in the potential and kinetic energy is the total change in the thermal energy of the slide and the seat of her pants.
This can be given as:



Answer:
4.86 seconds
Explanation:
Velocity of projection, u = 14 m/s
angle of projection, θ = 20°
Formula for the time of flight

For earth
Te = (2 x 14 x Sin 20) / 9.8
Te = 0.98 s
For moon
g' = g/6 = 1.64 m/s^2
Tm = ( 2 x 14 x Sin 20) / 1.64
Tm = 5.84 seconds
Tm - Te = 5.84 - 0.98 = 4.86 s
So, it takes 4.86 s more time of flight on moon than the earth.