In this case, volume of the can remains constant. The relationship between pressure and temperature at constant volume is given by:
P/T = Constant
Then

Where
P1 = 40 psi
P2 = ?
T1 = 60°F ≈ 289 K
T2 = 90°F ≈ 305 K (note, 363 K is not right)
Substituting;
To solve this problem it is necessary to apply the concepts related to the kinematic equations of movement description, which determine the velocity, such as the displacement of a particle as a function of time, that is to say

Where,
x = Displacement
v = Velocity
t = Time
Our values are given as,


Replacing we have that,



Therefore the distance from Earth to the Moon is 399.000 km
For rotational equilibrium of the door we can say that torque due to weight of the door must be counter balanced by the torque of external force

here weight will act at mid point of door so its distance is half of the total distance where force is applied
here we know that

now we will have


so our applied force is 72.5 N
Answer:
Since binary is only 1 and 0, you can use a flashlight to display something similar to Morse code (see explanation below)
Explanation:
In binary, 1 means "on" and 0 means "off". A way you can use visible light is through turning on and off a flashlight. If the flashlight is turned on, it would represent a 1. If the flashlight is turned off, it would represent a 0. To make the message easier and more accurately understood for the receiver make sure to flash the lights in a consistent pattern (ex. each flash lasts no longer than half a second, one second between each digit, etc.)
For example, let's say you're trying to send the message "11001"
on on off off on
0 1 2 3 4 5 <em>Numbers represent seconds</em>
As you can see above the message starts at 0 seconds. Between 0 and 1 seconds the flashlight is turned on once. Between 1 and 2 seconds the flashlight is turned on again, Between 2 and 3 seconds as well as 3 and 4 seconds the flashlight is not turned on at all. And finally between 4 and 5 seconds the flashlight is turned on.
Answer:19.32 m/s
Explanation:
Given
initial speed of car(u)=4.92 m/s
acceleration(a)=
Speed of car after 4.5 s
using equation of motion
v=u+at

v=19.32 m/s
Displacement of the car after 4.5 s



s=54.54 m