1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korvikt [17]
2 years ago
14

In an experiment to measure the specific heat capacity of copper, 0.02 kg of water at 70°C is poured into a copper calorimeter (

with a stirrer) of mass 0.16 kg at 15°C. After stirring, the final temperature is found to be 45°C. If the specific heat of water is 4,200 J/kg/°C,​
Physics
1 answer:
harkovskaia [24]2 years ago
6 0

\orange{\underline{\huge{\bold{\textit{\green{\bf{QUESTIONS}}}}}}}

In an experiment to measure the specific heat capacity of copper, 0.02 kg of water at 70°C is poured into a copper calorimeter (with a stirrer) of mass 0.16 kg at 15°C. After stirring, the final temperature is found to be 45°C. If the specific heat of water is 4,200 J/kg/°C,

\blue{\huge{\red{\boxed{\green{\mathfrak{GIVEN}}}}}}

WATER:-

Mass :- 0.02 kg at 70°C

Specific Heat Of Water is 4,200 J/kg°C,

COPPER:-

MASS:- mass 0.16 kg at 15°C

Temperatures r according to the part !

{\huge{\huge{\bold{\green{To  \: Find :- }}}}}

what is the quantity of heat released per kg of water per 1°C fall in temperature?

Calculate the heat energy released by water in the experiment in cooling from 70°C to 45°C.

Assuming that the heat released by water is entirely used to raise the temperature of calorimeter from 15°C to 45°C) calculate the specific heat capacity of copper.

\huge\red{\boxed{\huge\mathbb{\red A \pink{N}\purple{S} \blue{W} \orange{ER}}}}

{\blue{\star{\red{Part  \: 1 :- What \:   is \:  the  \: quantity \:  of heat \:  released \:  per  \: kg \:  of \:  w ater \:  per  \: 1°C \:   fall \:  in \:  temperature }}}}

\orange{Specific \:  \:  Heat}

It is the amount of the heat released by unit mass of the body per 1°C fall in temperature.

It is the amount of the heat absorbed by the unit mass of the body per 1°C rise in temperature

So quantity of heat released per kg of water per 1°C fall in temperature is equal to the specific heat of the water which is 4,200 J/kg°C,

{\red{\star{\blue{Part  \:2 :-\:  Calculate \:  the  \: heat \:  energy \:  released \:  by  \: water \:  in \:  the \:  experiment \:  in \:  cooling \:  from  \: 70°C  \: to \:  45°C. }}}}

MASS OF WATER --> 0.02 kg

INITIAL TEMPERATURE--> 70°C

FINAL TEMPERATURE--> 45°C

CHANGE IN TEMPERATURE--> (45-70)°C =(- 25)°C

SPECIFIC HEAT OF WATER--> 4200 J/ kg °C

Q =  mc\triangle T \\  \\ Q = 0.02 \times 4200 \times ( -25)  \\  \frac{2}{100}  \times 4200 \times( -  25) =Q \\ ( - 50) \times 42 = Q \\ Q = ( - 2100) \: joules

NEGATIVE INDICATES THAT HEAT IS RELEASED BY THE BODY!

IT MEANS COOLING HAS BEEN TAKEN PLACED.

{\red{\star{\green{Part  \:2 :-\:Assuming \:  that \:  the \:  heat \:  released \:  by  \: water}}}} \\  \\  {\green{is  \: entirely \:  used  \: to  \: raise \:  the temp \: of \:  calorimeter  \: from \:  15°C  \: to \:  45°C }} \\  \\{\green{ calculate  \: the  \: specific \:  heat  \: capacity \:  of  \: copper.}}

MASS OF COPPER :- 0.16 kg

INITIAL TEMPERATURE:- 15°C

FINAL TEMPERATURE:- 45°C

CHANGE IN TEMPERATURE--> (45-15)°C = 30°C

AMOUNT OF HEAT RELEASED BY WATER --> 2100 J ( From second part)

Q =  mc\triangle T \\  \\ 2100 = 0.16 \times c \times 30 \\ 70 = 0.16 \times c \\  \\ c =  \frac{7000}{16}  \\ c = 437.5 \:  \frac{J }{kg°C}

You might be interested in
What does the path of an object look like when it is in uniform motion?​
marysya [2.9K]

Answer:

The path of an object in uniform motion is a straight line.

4 0
1 year ago
Read 2 more answers
Which of the following would most likely cause a decrease in the quality supplied
soldier1979 [14.2K]

AWhich of the following would most likely cause a decrease in the quantity supplied? A decrease in price.

4 0
2 years ago
It moved from 0 cm to 5 cm at a constant speed of 1 cm/s.
Stels [109]

It moved from 0 cm to 4 cm at a constant speed of 1 cm/s.

8 0
3 years ago
A 1.90-kg mass vibrating up and down on the end of a vertical spring has a maximum speed of 2.30 m/s. What is the total potentia
Pepsi [2]

Answer:

The answer to the question is;

The total potential energy of the mass on the spring when the mass is at either endpoint of its motion is 5.0255 Joules.

Explanation:

To answer the question, we note that the maximum speed is 2.30 m/s and the mass is 1.90 kg

Therefore the maximum kinetic energy of motion is given by

Kinetic Energy, KE = \frac{1}{2} mv^{2}

Where,

m = Attached vibrating mass = 1.90 kg

v = velocity of the string = 2.3 m/s

Therefore Kinetic Energy, KE = \frac{1}{2}×1.9×2.3² = 5.0255 J

From the law of conservation of energy, we have the kinetic energy, during the cause of the vibration is converted to potential energy when the mass is at either endpoint of its motion

Therefore Potential Energy PE at end point = Kinetic Energy, KE at the middle of the motion

That is the total potential energy of the mass on the spring when the mass is at either endpoint of its motion is equal to the maximum kinetic energy.

Total PE = Maximum KE = 5.0255 J.

6 0
2 years ago
H. Briefly describe the process taking place in the image below and comment on the
katrin [286]

AHEMHFgjrhfrshfghesgrgregr

3 0
3 years ago
Other questions:
  • As an expert witness, a forensic scientist is ethically responsible for doing what?
    8·2 answers
  • PLEASE NEED HELP NOW!11 50 POINTS AND BRAINLY!!!!!!
    9·2 answers
  • A skateboarder is standing at the top of a tall ramp waiting to begin a trip. The skateboarder has
    8·1 answer
  • 1. Which of the following best describes the movement of an object at rest if no outside forces act on it?
    6·2 answers
  • The position of a particle moving along the x axis varies in time according to the expression x = 4t 2, where x is in meters and
    15·2 answers
  • What does a kidney do
    13·2 answers
  • What is a physical form in which a substance can exist?
    11·1 answer
  • Why won’t anyone help me please anybody help me I really need help .
    5·1 answer
  • You start driving your car when the air temperature is 270.734 K. The air pressure in the tires is 454.518 kPa. After driving a
    11·1 answer
  • A current of 5. 0 amperes is passing through a piece of wire. Determine how long it takes for 30 coulombs of charge to pass thro
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!