1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korvikt [17]
3 years ago
14

In an experiment to measure the specific heat capacity of copper, 0.02 kg of water at 70°C is poured into a copper calorimeter (

with a stirrer) of mass 0.16 kg at 15°C. After stirring, the final temperature is found to be 45°C. If the specific heat of water is 4,200 J/kg/°C,​
Physics
1 answer:
harkovskaia [24]3 years ago
6 0

\orange{\underline{\huge{\bold{\textit{\green{\bf{QUESTIONS}}}}}}}

In an experiment to measure the specific heat capacity of copper, 0.02 kg of water at 70°C is poured into a copper calorimeter (with a stirrer) of mass 0.16 kg at 15°C. After stirring, the final temperature is found to be 45°C. If the specific heat of water is 4,200 J/kg/°C,

\blue{\huge{\red{\boxed{\green{\mathfrak{GIVEN}}}}}}

WATER:-

Mass :- 0.02 kg at 70°C

Specific Heat Of Water is 4,200 J/kg°C,

COPPER:-

MASS:- mass 0.16 kg at 15°C

Temperatures r according to the part !

{\huge{\huge{\bold{\green{To  \: Find :- }}}}}

what is the quantity of heat released per kg of water per 1°C fall in temperature?

Calculate the heat energy released by water in the experiment in cooling from 70°C to 45°C.

Assuming that the heat released by water is entirely used to raise the temperature of calorimeter from 15°C to 45°C) calculate the specific heat capacity of copper.

\huge\red{\boxed{\huge\mathbb{\red A \pink{N}\purple{S} \blue{W} \orange{ER}}}}

{\blue{\star{\red{Part  \: 1 :- What \:   is \:  the  \: quantity \:  of heat \:  released \:  per  \: kg \:  of \:  w ater \:  per  \: 1°C \:   fall \:  in \:  temperature }}}}

\orange{Specific \:  \:  Heat}

It is the amount of the heat released by unit mass of the body per 1°C fall in temperature.

It is the amount of the heat absorbed by the unit mass of the body per 1°C rise in temperature

So quantity of heat released per kg of water per 1°C fall in temperature is equal to the specific heat of the water which is 4,200 J/kg°C,

{\red{\star{\blue{Part  \:2 :-\:  Calculate \:  the  \: heat \:  energy \:  released \:  by  \: water \:  in \:  the \:  experiment \:  in \:  cooling \:  from  \: 70°C  \: to \:  45°C. }}}}

MASS OF WATER --> 0.02 kg

INITIAL TEMPERATURE--> 70°C

FINAL TEMPERATURE--> 45°C

CHANGE IN TEMPERATURE--> (45-70)°C =(- 25)°C

SPECIFIC HEAT OF WATER--> 4200 J/ kg °C

Q =  mc\triangle T \\  \\ Q = 0.02 \times 4200 \times ( -25)  \\  \frac{2}{100}  \times 4200 \times( -  25) =Q \\ ( - 50) \times 42 = Q \\ Q = ( - 2100) \: joules

NEGATIVE INDICATES THAT HEAT IS RELEASED BY THE BODY!

IT MEANS COOLING HAS BEEN TAKEN PLACED.

{\red{\star{\green{Part  \:2 :-\:Assuming \:  that \:  the \:  heat \:  released \:  by  \: water}}}} \\  \\  {\green{is  \: entirely \:  used  \: to  \: raise \:  the temp \: of \:  calorimeter  \: from \:  15°C  \: to \:  45°C }} \\  \\{\green{ calculate  \: the  \: specific \:  heat  \: capacity \:  of  \: copper.}}

MASS OF COPPER :- 0.16 kg

INITIAL TEMPERATURE:- 15°C

FINAL TEMPERATURE:- 45°C

CHANGE IN TEMPERATURE--> (45-15)°C = 30°C

AMOUNT OF HEAT RELEASED BY WATER --> 2100 J ( From second part)

Q =  mc\triangle T \\  \\ 2100 = 0.16 \times c \times 30 \\ 70 = 0.16 \times c \\  \\ c =  \frac{7000}{16}  \\ c = 437.5 \:  \frac{J }{kg°C}

You might be interested in
A car with four passengers will have a shorter braking distance than a car with one braking distance. True or false. Why?
Valentin [98]

<u>Answer:</u>

The given statement is a True statement

<u>Explanation:</u>

All cars and trucks have load capacities marked on the jamb of the driver's door, as well as the owner's manual. This is very significant for braking distance.

A heavier object will require much more braking force and distance to stop, due to New ton's law of motion. “ An object in motion will tend to stay in motion “ .A heavy object will remain in motion longer and require much more force to stop. Four wheel disc brakes are great compared to front disc and rear drum configuration, in dissipating heat, and stopping more efficiently.

6 0
3 years ago
an airplane releases a ball as it flies parallel to the ground at a height of 235m. if the ball lands on the ground exactly at 2
Oksanka [162]
<span>When the question says the ball lands a distance of 235 meters from the release point, we can assume this means the horizontal distance is 235 meters. Let's calculate the time for the ball to fall 235 meters to the ground. y = (1/2)gt^2 t^2 = 2y / g t = sqrt{ 2y / g } t = sqrt{ (2) (235 m) / (9.81 m/s^2) } t = 6.9217 s We can use the time t to find the horizontal speed. v = d / t v = 235 m / 6.9217 s v = 33.95 m/s Since the horizontal speed is the speed of the plane, the speed of the plane is 33.95 m/s</span>
7 0
3 years ago
How is the number 3450 written in scientific notation?
sammy [17]

Answer:

B. 3.45 x 10^3

Explanation:

3450 = 3.45 \times  {10}^{3}  \\

4 0
4 years ago
Please help me find out this answer
Elanso [62]
The direction of work.........

4 0
3 years ago
The Hubble Space Telescope orbits the Earth at approximately 612,000m altitude. Its mass is 11,100 kg and the mass of earth is 5
nexus9112 [7]

Answer:

7.55 km/s

Explanation:

The force of gravity between the Earth and the Hubble Telescope corresponds to the centripetal force that keeps the telescope in uniform circular motion around the Earth:

G\frac{mM}{R^2}=m\frac{v^2}{R}

where

G=6.67\cdot 10^{-11} m^3 kg^{-1} s^{-2} is the gravitational constant

m=11,100 kg is the mass of the telescope

M=5.97\cdot 10^{24} kg is the mass of the Earth

R=r+h=6.38\cdot 10^6 m+612,000 m=6.99\cdot 10^6 m is the distance between the telescope and the Earth's centre (given by the sum of the Earth's radius, r, and the telescope altitude, h)

v = ? is the orbital velocity of the Hubble telescope

Re-arranging the equation and substituting numbers, we find the orbital velocity:

v=\sqrt{\frac{GM}{R}}=\sqrt{\frac{(6.67\cdot 10^{-11})(5.97\cdot 10^{24} kg)}{6.99\cdot 10^6 m}}=7548 m/s=7.55 km/s

6 0
3 years ago
Other questions:
  • Why does an ice cube melt when you hold it in your hand? Question 1 options: Heat from the ice cube is transferred to your hand.
    13·2 answers
  • Hi i was wondering if you could help me understand Kelvins? My question on my work says "Which of the following is the SI unit u
    9·1 answer
  • Helpppp!!!
    9·1 answer
  • What is the net force of a 10 kg box with a velocity of 2 meters a second?
    14·2 answers
  • Technological advances are now making it possible to link visible-light telescopes so that they can achieve the same angular res
    7·2 answers
  • A 79 kg person sits on a 3.7 kg chair. Each leg of the chair makes contact with the floor in a circle that is 1.3 cm in diameter
    8·1 answer
  • Which is an example of a mixture?
    14·1 answer
  • One of the characteristics of the planet mars that makes it very different from earth is that it does not have a large magnetic
    7·2 answers
  • Calculate the height from from which a body is released from rest if its velocity just before hitting the ground is30m\s
    13·1 answer
  • 06
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!