The time taken for him to move the bin 6.5 m is 2.30 s.
The given parameters;
- <em>weight of the load, w = 557 N</em>
- <em>force applied , F = 410 N</em>
- <em>angle of force, = 15°</em>
- <em>coefficient of kinetic friction = 0.46</em>
- <em>distance moved, d = 6.5 m</em>
The net horizontal force on the recycling bin is calculated as follows;

where;
- <em>m is the mass of the recycling bin</em>
- <em />
<em> is the frictional force </em>
W = mg

The net horizontal force on the recycling bin is calculated as;

The time taken for him to move the bin 6.5 m is calculated as follows;

Thus, the time taken for him to move the bin 6.5 m is 2.30 s.
Learn more here:brainly.com/question/21684583
Answer:
Explanation:
Given that,
B(t) = B0 cos(ωt) • k
Radius r = a
Inner radius r' = a/2 and resistance R.
Current in the loop as a function of time I(t) =?
Magnetic flux is given as
Φ = BA
And the Area is given as
A = πr², where r = a/2
A = πa²/4
Then,
Φ = ¼ Bπa²
Φ(t) = ¼πa²Bo•Cos(ωt)
Then, the EMF is given as
ε(t) = -dΦ/dt
ε(t) = -¼πa²Bo • -ωSin(ωt)
ε(t) = ¼ωπa²Bo•Sin(ωt)
From ohms law,
ε = iR
Then, i = ε/R
I(t) = ¼ωπa²Bo•Sin(ωt) /R
This is the current induced in the loop.
Check attachment for better understanding
Answer:
Explanation:
Given

Frictional Force is balanced by force due to car acceleration
Frictional force 




Answer:
1000 N
Explanation:
The magnitude of the electrostatic force between two charged object is given by

where
k is the Coulomb constant
q1, q2 is the magnitude of the two charges
r is the distance between the two objects
Moreover, the force is:
- Attractive if the two forces have opposite sign
- Repulsive if the two forces have same sign
In this problem:
are the two charges
r = 3000 m is their separation
Therefore, the electric force between the charges is:

Answer:
d
Explanation:
rzp-yyib-oiv
plèase jóin ón góógle mèèt